Monge-Ampere Regularization for Learning Arbitrary Shapes from Point Clouds
- URL: http://arxiv.org/abs/2410.18477v1
- Date: Thu, 24 Oct 2024 06:56:34 GMT
- Title: Monge-Ampere Regularization for Learning Arbitrary Shapes from Point Clouds
- Authors: Chuanxiang Yang, Yuanfeng Zhou, Guangshun Wei, Long Ma, Junhui Hou, Yuan Liu, Wenping Wang,
- Abstract summary: We propose the scaled-squared distance function (S$2$DF), a novel implicit surface representation for modeling arbitrary surface types.
S$2$DF does not distinguish between inside and outside regions while effectively addressing the non-differentiability issue of UDF at the zero level set.
We demonstrate that S$2$DF satisfies a second-order partial differential equation of Monge-Ampere-type.
- Score: 69.69726932986923
- License:
- Abstract: As commonly used implicit geometry representations, the signed distance function (SDF) is limited to modeling watertight shapes, while the unsigned distance function (UDF) is capable of representing various surfaces. However, its inherent theoretical shortcoming, i.e., the non-differentiability at the zero level set, would result in sub-optimal reconstruction quality. In this paper, we propose the scaled-squared distance function (S$^{2}$DF), a novel implicit surface representation for modeling arbitrary surface types. S$^{2}$DF does not distinguish between inside and outside regions while effectively addressing the non-differentiability issue of UDF at the zero level set. We demonstrate that S$^{2}$DF satisfies a second-order partial differential equation of Monge-Ampere-type, allowing us to develop a learning pipeline that leverages a novel Monge-Ampere regularization to directly learn S$^{2}$DF from raw unoriented point clouds without supervision from ground-truth S$^{2}$DF values. Extensive experiments across multiple datasets show that our method significantly outperforms state-of-the-art supervised approaches that require ground-truth surface information as supervision for training. The code will be publicly available at https://github.com/chuanxiang-yang/S2DF.
Related papers
- Neural Surface Detection for Unsigned Distance Fields [51.77214039267625]
We introduce a deep-learning approach to taking a UDF and turning it locally into an SDF, so that it can be effectively triangulated using existing algorithms.
We show that it achieves better accuracy in surface detection than existing methods.
We also demonstrate the flexibily of the method by using it in conjunction with DualMeshUDF, a state of the art dual meshing method that can operate on UDFs.
arXiv Detail & Related papers (2024-07-25T20:31:40Z) - Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models [83.35835521670955]
Surf-D is a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies.
We use the Unsigned Distance Field (UDF) as our surface representation to accommodate arbitrary topologies.
We also propose a new pipeline that employs a point-based AutoEncoder to learn a compact and continuous latent space for accurately encoding UDF.
arXiv Detail & Related papers (2023-11-28T18:56:01Z) - Robust Zero Level-Set Extraction from Unsigned Distance Fields Based on
Double Covering [28.268387694075415]
We propose a new method for extracting the zero level-set from unsigned distance fields (UDFs)
DoubleCoverUDF takes a learned UDF and a user-specified parameter $r$ as input.
We show that the computed iso-surface is the boundary of the $r$-offset volume of the target zero level-set $S$.
arXiv Detail & Related papers (2023-10-05T10:17:30Z) - SuperUDF: Self-supervised UDF Estimation for Surface Reconstruction [18.709806913026977]
SuperUDF is a self-supervised learning system for surface reconstruction.
It exploits a learned geometry prior for efficient training and a novel regularization for robustness to sparse sampling.
It outperforms the state of the arts on several public datasets in terms of both quality and efficiency.
arXiv Detail & Related papers (2023-08-28T07:40:48Z) - Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
It is vital to infer signed distance functions (SDFs) from 3D point clouds.
We present a neural network to directly infer SDFs from single sparse point clouds.
arXiv Detail & Related papers (2023-03-25T15:56:50Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDF is a novel method to learn consistency-aware UDF from raw point clouds.
We train a neural network to gradually infer the relationship between queries and the approximated surface.
We also introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF.
arXiv Detail & Related papers (2022-10-06T08:51:08Z) - DUDE: Deep Unsigned Distance Embeddings for Hi-Fidelity Representation
of Complex 3D Surfaces [8.104199886760275]
DUDE is a disentangled shape representation that utilizes an unsigned distance field (uDF) to represent proximity to a surface, and a normal vector field (nVF) to represent surface orientation.
We show that a combination of these two (uDF+nVF) can be used to learn high fidelity representations for arbitrary open/closed shapes.
arXiv Detail & Related papers (2020-11-04T22:49:05Z) - Neural Unsigned Distance Fields for Implicit Function Learning [53.241423815726925]
We propose Neural Distance Fields (NDF), a neural network based model which predicts the unsigned distance field for arbitrary 3D shapes.
NDF represent surfaces at high resolutions as prior implicit models, but do not require closed surface data.
NDF can be used for multi-target regression (multiple outputs for one input) with techniques that have been exclusively used for rendering in graphics.
arXiv Detail & Related papers (2020-10-26T22:49:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.