A Systematic Survey on Instructional Text: From Representation Formats to Downstream NLP Tasks
- URL: http://arxiv.org/abs/2410.18529v2
- Date: Wed, 30 Oct 2024 07:02:22 GMT
- Title: A Systematic Survey on Instructional Text: From Representation Formats to Downstream NLP Tasks
- Authors: Abdulfattah Safa, Tamta Kapanadze, Arda Uzunoğlu, Gözde Gül Şahin,
- Abstract summary: Real-world tasks often involve complex, multi-step instructions that remain challenging for current NLP systems.
Our study examines 177 papers, identifying trends, challenges, and opportunities in this emerging field.
- Score: 0.0
- License:
- Abstract: Recent advances in large language models have demonstrated promising capabilities in following simple instructions through instruction tuning. However, real-world tasks often involve complex, multi-step instructions that remain challenging for current NLP systems. Despite growing interest in this area, there lacks a comprehensive survey that systematically analyzes the landscape of complex instruction understanding and processing. Through a systematic review of the literature, we analyze available resources, representation schemes, and downstream tasks related to instructional text. Our study examines 177 papers, identifying trends, challenges, and opportunities in this emerging field. We provide AI/NLP researchers with essential background knowledge and a unified view of various approaches to complex instruction understanding, bridging gaps between different research directions and highlighting future research opportunities.
Related papers
- Advancements and Challenges in Bangla Question Answering Models: A Comprehensive Review [0.0]
This paper presents a comprehensive review of seven research articles that contribute to the progress in this domain.
The papers introduce innovative methods like using LSTM-based models with attention mechanisms, context-based QA systems, and deep learning techniques based on prior knowledge.
Despite the progress made, several challenges remain, including the lack of well-annotated data, the absence of high-quality reading comprehension datasets, and difficulties in understanding the meaning of words in context.
arXiv Detail & Related papers (2024-12-16T14:42:26Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks.
We propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement.
We use this framework to explore citation text generation -- a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric.
arXiv Detail & Related papers (2024-07-04T16:41:08Z) - Advancing Explainable Autonomous Vehicle Systems: A Comprehensive Review and Research Roadmap [4.2330023661329355]
This study presents a review to discuss the complexities associated with explanation generation and presentation.
Our roadmap is underpinned by principles of responsible research and innovation.
By exploring these research directions, the study aims to guide the development and deployment of explainable AVs.
arXiv Detail & Related papers (2024-03-19T11:43:41Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing [0.5266869303483376]
Review systematically introduces each task, delineates key architectures from Recurrent Neural Networks (RNNs) to Transformer-based models like BERT.
The adaptability of ensemble techniques is emphasized, highlighting their capacity to enhance various NLP applications.
Challenges in implementation, including computational overhead, overfitting, and model interpretation complexities, are addressed.
arXiv Detail & Related papers (2023-12-09T14:49:34Z) - Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications [41.24492058141363]
Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations.
We propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications.
arXiv Detail & Related papers (2023-11-10T05:24:04Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - A Review of the Trends and Challenges in Adopting Natural Language
Processing Methods for Education Feedback Analysis [4.040584701067227]
Machine learning, deep learning, and natural language processing (NLP) are subsets of AI to tackle different areas of data processing and modelling.
This review article presents an overview of AI impact on education outlining with current opportunities.
arXiv Detail & Related papers (2023-01-20T23:38:58Z) - A Survey on Programmatic Weak Supervision [74.13976343129966]
We give brief introduction of the PWS learning paradigm and review representative approaches for each PWS's learning workflow.
We identify several critical challenges that remain underexplored in the area to hopefully inspire future directions in the field.
arXiv Detail & Related papers (2022-02-11T04:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.