On Explaining with Attention Matrices
- URL: http://arxiv.org/abs/2410.18541v1
- Date: Thu, 24 Oct 2024 08:43:33 GMT
- Title: On Explaining with Attention Matrices
- Authors: Omar Naim, Nicholas Asher,
- Abstract summary: This paper explores the possible explanatory link between attention weights (AW) in transformer models and predicted output.
We introduce and effectively compute efficient attention, which isolates the effective components of attention matrices in tasks and models in which AW play an explanatory role.
- Score: 2.1178416840822027
- License:
- Abstract: This paper explores the much discussed, possible explanatory link between attention weights (AW) in transformer models and predicted output. Contrary to intuition and early research on attention, more recent prior research has provided formal arguments and empirical evidence that AW are not explanatorily relevant. We show that the formal arguments are incorrect. We introduce and effectively compute efficient attention, which isolates the effective components of attention matrices in tasks and models in which AW play an explanatory role. We show that efficient attention has a causal role (provides minimally necessary and sufficient conditions) for predicting model output in NLP tasks requiring contextual information, and we show, contrary to [7], that efficient attention matrices are probability distributions and are effectively calculable. Thus, they should play an important part in the explanation of attention based model behavior. We offer empirical experiments in support of our method illustrating various properties of efficient attention with various metrics on four datasets.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - How Much Does Attention Actually Attend? Questioning the Importance of
Attention in Pretrained Transformers [59.57128476584361]
We introduce PAPA, a new probing method that replaces the input-dependent attention matrices with constant ones.
We find that without any input-dependent attention, all models achieve competitive performance.
We show that better-performing models lose more from applying our method than weaker models, suggesting that the utilization of the input-dependent attention mechanism might be a factor in their success.
arXiv Detail & Related papers (2022-11-07T12:37:54Z) - Revisiting Attention Weights as Explanations from an Information
Theoretic Perspective [4.499369811647602]
We show that attention mechanisms have the potential to function as a shortcut to model explanations when they are carefully combined with other model elements.
Our findings indicate that attention mechanisms do have the potential to function as a shortcut to model explanations when they are carefully combined with other model elements.
arXiv Detail & Related papers (2022-10-31T12:53:20Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - A Song of (Dis)agreement: Evaluating the Evaluation of Explainable
Artificial Intelligence in Natural Language Processing [7.527234046228323]
We argue that the community should stop using rank correlation as an evaluation metric for attention-based explanations.
We find that attention-based explanations do not correlate strongly with any recent feature attribution methods.
arXiv Detail & Related papers (2022-05-09T21:07:39Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Is Sparse Attention more Interpretable? [52.85910570651047]
We investigate how sparsity affects our ability to use attention as an explainability tool.
We find that only a weak relationship between inputs and co-indexed intermediate representations exists -- under sparse attention.
We observe in this setting that inducing sparsity may make it less plausible that attention can be used as a tool for understanding model behavior.
arXiv Detail & Related papers (2021-06-02T11:42:56Z) - Effective Attention Sheds Light On Interpretability [3.317258557707008]
We ask whether visualizing effective attention gives different conclusions than interpretation of standard attention.
We show that effective attention is less associated with the features related to the language modeling pretraining.
We recommend using effective attention for studying a transformer's behavior since it is more pertinent to the model output by design.
arXiv Detail & Related papers (2021-05-18T23:41:26Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity.
Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism.
We propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design.
arXiv Detail & Related papers (2021-02-25T14:13:44Z) - Why Attentions May Not Be Interpretable? [46.69116768203185]
Recent research found that attention-as-importance interpretations often do not work as we expected.
We show that one root cause of this phenomenon is shortcuts, which means that the attention weights themselves may carry extra information.
We propose two methods to mitigate this issue.
arXiv Detail & Related papers (2020-06-10T05:08:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.