論文の概要: On Model-Free Re-ranking for Visual Place Recognition with Deep Learned Local Features
- arxiv url: http://arxiv.org/abs/2410.18573v1
- Date: Thu, 24 Oct 2024 09:26:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:43:27.158515
- Title: On Model-Free Re-ranking for Visual Place Recognition with Deep Learned Local Features
- Title(参考訳): 深層学習型局所特徴量を用いた視覚的位置認識のためのモデルフリー再ランク付けについて
- Authors: Tomáš Pivoňka, Libor Přeučil,
- Abstract要約: 記事は、標準的なローカルな視覚的特徴に基づいて、モデルフリーで再ランク付けすることに焦点を当てている。
これは、主に深層学習された局所的な視覚的特徴のために設計された3つの新しいモデルフリーなリグレード手法を導入している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Re-ranking is the second stage of a visual place recognition task, in which the system chooses the best-matching images from a pre-selected subset of candidates. Model-free approaches compute the image pair similarity based on a spatial comparison of corresponding local visual features, eliminating the need for computationally expensive estimation of a model describing transformation between images. The article focuses on model-free re-ranking based on standard local visual features and their applicability in long-term autonomy systems. It introduces three new model-free re-ranking methods that were designed primarily for deep-learned local visual features. These features evince high robustness to various appearance changes, which stands as a crucial property for use with long-term autonomy systems. All the introduced methods were employed in a new visual place recognition system together with the D2-net feature detector (Dusmanu, 2019) and experimentally tested with diverse, challenging public datasets. The obtained results are on par with current state-of-the-art methods, affirming that model-free approaches are a viable and worthwhile path for long-term visual place recognition.
- Abstract(参考訳): 再ランク付けは視覚的位置認識タスクの第2段階であり、システムは予め選択された候補のサブセットから最適なマッチング画像を選択する。
モデルフリーアプローチは、画像間の変換を記述するモデルの計算コストを削減し、対応する局所的な視覚特徴の空間的比較に基づいて、画像対の類似性を計算する。
この記事では、標準のローカルビジュアル特徴と長期自律システムへの適用性に基づいて、モデルフリーで再ランク付けすることに焦点を当てる。
これは、主に深層学習された局所的な視覚的特徴のために設計された3つの新しいモデルフリーなリグレード手法を導入している。
これらの特徴は、様々な外観の変化に対して高い堅牢性をもたらし、これは長期的な自律システムでの使用にとって重要な特性である。
導入されたすべての方法は、D2-net特徴検出器(Dusmanu, 2019)とともに新しい視覚的位置認識システムに使用され、多様な、挑戦的なパブリックデータセットで実験的にテストされた。
得られた結果は、現在最先端の手法と同等であり、モデルフリーアプローチが長期的な視覚的位置認識に有用で価値のある道であることを確認した。
関連論文リスト
- Improving satellite imagery segmentation using multiple Sentinel-2 revisits [0.0]
我々は、微調整された事前学習されたリモートセンシングモデルのフレームワークにおいて、リビジョンを使用する最善の方法を探る。
モデル潜在空間における複数の再試行からの融合表現は、他の再試行法よりも優れていることが判明した。
SWINトランスフォーマーベースのアーキテクチャは、U-netやViTベースのモデルよりも優れている。
論文 参考訳(メタデータ) (2024-09-25T21:13:33Z) - Freeview Sketching: View-Aware Fine-Grained Sketch-Based Image Retrieval [85.73149096516543]
微細スケッチベース画像検索(FG-SBIR)におけるスケッチ作成時の視点選択について検討する。
パイロットスタディでは、クエリスケッチがターゲットインスタンスと異なる場合、システムの苦労を強調している。
これを解決するために、ビューに依存しないタスクとビュー固有のタスクの両方をシームレスに収容するビューアウェアシステムを提案する。
論文 参考訳(メタデータ) (2024-07-01T21:20:44Z) - Breaking the Frame: Visual Place Recognition by Overlap Prediction [53.17564423756082]
本稿では,重なり合う予測に基づく新しい視覚的位置認識手法 VOP を提案する。
VOPは、Vision Transformerのバックボーンを使用してパッチレベルの埋め込みを取得することで、コビジュアブルなイメージセクションを進める。
提案手法では,データベース画像の重複点の評価に投票機構を用いる。
論文 参考訳(メタデータ) (2024-06-23T20:00:20Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
位置認識のための新しいネットワークであるOverlapMambaを開発した。
本手法は,以前に訪れた場所を異なる方向から横断する場合でも,ループの閉鎖を効果的に検出する。
生のレンジビューの入力に基づいて、典型的なLiDARと複数ビューの組み合わせ法を時間的複雑さと速度で上回っている。
論文 参考訳(メタデータ) (2024-05-13T17:46:35Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
本稿では,統合視覚言語スコアリングシステムを活用したデュアルイメージ強化CLIP手法を提案する。
提案手法は,画像のペアを処理し,それぞれを視覚的参照として利用することにより,視覚的コンテキストによる推論プロセスを強化する。
提案手法は視覚言語による関節異常検出の可能性を大幅に活用し,従来のSOTA法と同等の性能を示す。
論文 参考訳(メタデータ) (2024-05-08T03:13:20Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - View-Invariant Gait Recognition with Attentive Recurrent Learning of
Partial Representations [27.33579145744285]
本稿では,まず,フレームレベルの畳み込み特徴から歩行畳み込みエネルギーマップ(GCEM)を抽出するネットワークを提案する。
次に、GCEMの分割されたビンから学ぶために双方向ニューラルネットワークを採用し、学習された部分的リカレント表現の関係を利用する。
提案手法は2つの大規模CASIA-BとOU-Mの歩行データセットで広範囲に検証されている。
論文 参考訳(メタデータ) (2020-10-18T20:20:43Z) - Gait Recognition using Multi-Scale Partial Representation Transformation
with Capsules [22.99694601595627]
本稿では,カプセルを用いたマルチスケール部分歩行表現の伝達を学習する,新しいディープネットワークを提案する。
我々のネットワークは、まず最先端のディープ部分特徴抽出器を用いて、マルチスケールな部分表現を得る。
その後、前向きと後向きの部分的特徴間のパターンの相関関係と共起関係を繰り返し学習する。
論文 参考訳(メタデータ) (2020-10-18T19:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。