論文の概要: STTATTS: Unified Speech-To-Text And Text-To-Speech Model
- arxiv url: http://arxiv.org/abs/2410.18607v1
- Date: Thu, 24 Oct 2024 10:04:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:40.768597
- Title: STTATTS: Unified Speech-To-Text And Text-To-Speech Model
- Title(参考訳): STTATTS:統一音声テキストとテキスト音声モデル
- Authors: Hawau Olamide Toyin, Hao Li, Hanan Aldarmaki,
- Abstract要約: マルチタスク学習目標と共有パラメータを用いて, ASR と TTS を協調的に学習するためのパラメータ効率のよい手法を提案する。
評価の結果,マルチタスクモデルの性能は,個別に訓練したモデルに匹敵することがわかった。
- 参考スコア(独自算出の注目度): 6.327929516375736
- License:
- Abstract: Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates that the performance of our multi-task model is comparable to that of individually trained models while significantly saving computational and memory costs ($\sim$50\% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.
- Abstract(参考訳): 音声認識と音声合成モデルは、通常、個別に訓練され、それぞれ独自の学習目標、訓練データ、モデルパラメータを持つ。
マルチタスク学習目標と共有パラメータを用いて, ASR と TTS を協調的に学習するためのパラメータ効率のよい手法を提案する。
評価の結果、マルチタスクモデルの性能は個別に訓練されたモデルに匹敵するが、計算コストとメモリコストは大幅に削減されている(2つのタスクの組み合わせに必要なパラメータの総数を50 %削減した)。
資源豊富な言語として英語を実験し、TSデータ不足により比較的低リソース言語としてアラビア語を実験した。
私たちのモデルは、公開データでトレーニングされており、トレーニングコードとモデルチェックポイントの両方が、さらなる研究のために公開されています。
関連論文リスト
- Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - Mispronunciation detection using self-supervised speech representations [10.010024759851142]
本稿では,第2言語学習者の誤発音検出作業におけるSSLモデルの利用について検討する。
そこで本研究では,1)母国英語データを用いた音声認識モデルの訓練,2)非母国英語データを用いた目標タスクのためのモデルを直接訓練する,という2つのダウンストリームアプローチを比較した。
論文 参考訳(メタデータ) (2023-07-30T21:20:58Z) - Textually Pretrained Speech Language Models [107.10344535390956]
本稿では、事前訓練されたテキスト言語モデルからウォームスタートを用いたSpeechLMの訓練方法であるTWISTを提案する。
我々は、TWISTがボード全体のコールドスタートSpeechLMより優れる自動評価と人的評価の両方を用いて示す。
論文 参考訳(メタデータ) (2023-05-22T13:12:16Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
コントラスト的視覚言語モデル(例えばCLIP)は、コントラスト的トレーニングを通じて視覚モデルと言語モデルの全てのパラメータを更新することによって作成される。
パラメータ更新の最小セット($7%)が、フルモデルトレーニングと同じパフォーマンスを実現可能であることを示す。
既存の知識がパラメータ効率のトレーニングにおいてより強く保存されていることを示す。
論文 参考訳(メタデータ) (2023-03-21T14:12:08Z) - Improving Massively Multilingual ASR With Auxiliary CTC Objectives [40.10307386370194]
FLEURSは102言語によるオープンASRベンチマークである。
我々は,最近のコネクショニスト時間分類(CTC)研究から着想を得た手法を考察し,モデルが多数の言語を扱えるようにした。
コンバータアーキテクチャを用いた自己教師型モデルを用いた最先端システムでは,相対28.4%CERによるFLEURSの先行研究よりも改善されている。
論文 参考訳(メタデータ) (2023-02-24T18:59:51Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Multitask Learning for Low Resource Spoken Language Understanding [26.106133114838215]
我々は、自動音声認識と意図分類、感情分類を用いて、二重目的のモデルを訓練する。
我々のモデルは、控えめなサイズではあるが、意図の分類に基づいて訓練されたモデルよりも改善されている。
本研究では,低リソースシナリオにおけるモデルの性能を,クラス毎に1つの例でトレーニングすることで検討する。
論文 参考訳(メタデータ) (2022-11-24T16:38:17Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
本稿では,DSTC-10の音声対話課題における知識ベースタスク指向対話モデリングのための一般化モデルの構築について述べる。
我々は,人工誤り注入やラウンドトリップ音声変換など,手書きデータに対する広範なデータ拡張戦略を採用している。
本手法は, 客観的評価では3位, 最終公式評価では2位である。
論文 参考訳(メタデータ) (2022-03-08T12:26:57Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。