Evolutionary Dispersal of Ecological Species via Multi-Agent Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2410.18621v1
- Date: Thu, 24 Oct 2024 10:21:23 GMT
- Title: Evolutionary Dispersal of Ecological Species via Multi-Agent Deep Reinforcement Learning
- Authors: Wonhyung Choi, Inkyung Ahn,
- Abstract summary: This study uses multi-agent reinforcement learning (MARL) with deep Q-networks (DQN) to simulate single species and predator-prey interactions.
Our simulations reveal evolutionary dispersal strategies, providing insights into species dispersal mechanisms and validating traditional mathematical models.
- Score: 0.0
- License:
- Abstract: Understanding species dynamics in heterogeneous environments is essential for ecosystem studies. Traditional models assumed homogeneous habitats, but recent approaches include spatial and temporal variability, highlighting species migration. We adopt starvation-driven diffusion (SDD) models as nonlinear diffusion to describe species dispersal based on local resource conditions, showing advantages for species survival. However, accurate prediction remains challenging due to model simplifications. This study uses multi-agent reinforcement learning (MARL) with deep Q-networks (DQN) to simulate single species and predator-prey interactions, incorporating SDD-type rewards. Our simulations reveal evolutionary dispersal strategies, providing insights into species dispersal mechanisms and validating traditional mathematical models.
Related papers
- Multi-Scale and Multimodal Species Distribution Modeling [4.022195138381868]
Species distribution models (SDMs) aim to predict the distribution of species relating occurrence data with environmental variables.
Recent applications of deep learning to SDMs have enabled new avenues, specifically the inclusion of spatial data.
We develop a modular structure for SDMs that allows us to test the effect of scale in both single- and multi-scale settings.
Results on the GeoLifeCLEF 2023 benchmark indicate that considering multimodal data and learning multi-scale representations leads to more accurate models.
arXiv Detail & Related papers (2024-11-06T15:57:20Z) - Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design [56.957070405026194]
We propose an algorithm that enables direct backpropagation of rewards through entire trajectories generated by diffusion models.
DRAKES can generate sequences that are both natural-like and yield high rewards.
arXiv Detail & Related papers (2024-10-17T15:10:13Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Diffusion Models are Evolutionary Algorithms [1.8299322342860518]
We show that diffusion models inherently perform evolutionary algorithms, naturally encompassing selection, mutation, and reproductive isolation.
We propose the Diffusion Evolution method: an evolutionary algorithm utilizing iterative denoising.
We also introduce Latent Space Diffusion Evolution, which finds solutions for evolutionary tasks in high-dimensional complex parameter space.
arXiv Detail & Related papers (2024-10-03T14:47:46Z) - Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution [19.899467048643363]
We introduce Phylo-Diffusion, a framework for conditioning diffusion models with phylogenetic knowledge represented by HIERarchical Embeddings (HIER-Embeds)
We also propose two new experiments for perturbing the embedding space of Phylo-Diffusion: trait masking and trait swapping.
Our work also opens a new chapter of research in evolutionary biology by using generative models to visualize evolutionary changes directly from images.
arXiv Detail & Related papers (2024-07-31T21:06:14Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Imbalance-aware Presence-only Loss Function for Species Distribution
Modeling [3.4306175858244794]
This study assesses the effectiveness of training deep learning models using a balanced presence-only loss function on large citizen science-based datasets.
We demonstrate that this imbalance-aware loss function outperforms traditional loss functions across various datasets and tasks.
arXiv Detail & Related papers (2024-03-12T10:08:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - LD-SDM: Language-Driven Hierarchical Species Distribution Modeling [9.620416509546471]
We focus on the problem of species distribution modeling using global-scale presence-only data.
To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model.
We propose a novel proximity-aware evaluation metric that enables evaluating species distribution models.
arXiv Detail & Related papers (2023-12-13T18:11:37Z) - Unbalanced Diffusion Schr\"odinger Bridge [71.31485908125435]
We introduce unbalanced DSBs which model the temporal evolution of marginals with arbitrary finite mass.
This is achieved by deriving the time reversal of differential equations with killing and birth terms.
We present two novel algorithmic schemes that comprise a scalable objective function for training unbalanced DSBs.
arXiv Detail & Related papers (2023-06-15T12:51:56Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.