論文の概要: Little Giants: Synthesizing High-Quality Embedding Data at Scale
- arxiv url: http://arxiv.org/abs/2410.18634v1
- Date: Thu, 24 Oct 2024 10:47:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:19.116499
- Title: Little Giants: Synthesizing High-Quality Embedding Data at Scale
- Title(参考訳): リトルジャイアンツ: スケールで高品質な埋め込みデータを合成する
- Authors: Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou,
- Abstract要約: SPEEDは,オープンソースの小型モデルと協調して大規模な埋め込みデータを効率的に生成するフレームワークである。
SPEEDはGPT API呼び出しの1/10未満しか使用せず、両者が合成データのみに基づいてトレーニングされている場合、最先端の埋め込みモデルE5_mistralよりも優れている。
- 参考スコア(独自算出の注目度): 71.352883755806
- License:
- Abstract: Synthetic data generation has become an increasingly popular way of training models without the need for large, manually labeled datasets. For tasks like text embedding, synthetic data offers diverse and scalable training examples, significantly reducing the cost of human annotation. However, most current approaches rely heavily on proprietary models like GPT-4, which are expensive and inefficient for generating large-scale embedding data. In this paper, we introduce SPEED, a framework that aligns open-source small models (8B) to efficiently generate large-scale synthetic embedding data. Through supervised fine-tuning, preference optimization, and self-improvement, SPEED enables small open-source models to produce high-quality data. Remarkably, SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data. Using this efficient generator, we conduct a comprehensive study on how various factors within the alignment pipeline impact data quality and reveal the scaling law for synthetic embedding data.
- Abstract(参考訳): 合成データ生成は、大規模で手動でラベル付けされたデータセットを必要とせずにモデルをトレーニングする方法として、ますます人気が高まっている。
テキスト埋め込みのようなタスクでは、合成データは多様でスケーラブルなトレーニング例を提供し、人間のアノテーションのコストを大幅に削減する。
しかし、現在のほとんどのアプローチは、大規模埋め込みデータを生成するのに高価で非効率なGPT-4のようなプロプライエタリなモデルに大きく依存している。
本稿では,オープンソースの小型モデル(8B)を協調して,大規模合成埋め込みデータを効率的に生成するフレームワークであるSPEEDを紹介する。
教師付き微調整、選好最適化、自己改善により、SPEEDは小さなオープンソースモデルで高品質なデータを生成することができる。
注目すべきは、SPEEDはGPT API呼び出しの1/10未満しか使用せず、両者が合成データのみに基づいてトレーニングされている場合、最先端の埋め込みモデルE5_mistralよりも優れています。
この効率的なジェネレータを用いて、アライメントパイプライン内の様々な要因がデータ品質に与える影響について包括的な研究を行い、合成埋め込みデータのスケーリング法則を明らかにする。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data [10.217822818544475]
大規模言語モデル(LLM)を用いた合成(語彙)データを生成するフレームワークを提案する。
提案手法は, サンプルサイズが小さい一般的なシナリオにおいて, 合成データ生成の品質を著しく向上させる。
以上の結果から,本モデルは下流タスクにおける高品質な合成データを生成する上で,実際のデータのプライバシを維持しつつ,いくつかの最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-06-15T06:26:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
※データ合成*はラベル付きデータの少ない小さなモデルをトレーニングするための有望な方法です。
本稿では,この分散ギャップを縮めるデータ合成フレームワークであるStep* (**S3**) による合成ステップを提案する。
提案手法は,合成データセットと実データとのギャップを小さくすることで,小型モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T17:14:25Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Synthetic Data Generation in Low-Resource Settings via Fine-Tuning of
Large Language Models [15.991777903345575]
大規模な言語モデルは、比較的少ないラベル付き例で下流タスクを一般化することができる。
あるいは、ラベル付きサンプルを十分に微調整すれば、より小さなモデルで特定のタスクを解くことができる。
我々は、より小さなモデルの下流性能を改善するために、微調整教師LEMを用いた微調整訓練データの合成データ生成について検討した。
論文 参考訳(メタデータ) (2023-10-02T11:49:05Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。