論文の概要: Health Misinformation in Social Networks: A Survey of IT Approaches
- arxiv url: http://arxiv.org/abs/2410.18670v1
- Date: Thu, 24 Oct 2024 12:00:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:50.244051
- Title: Health Misinformation in Social Networks: A Survey of IT Approaches
- Title(参考訳): ソーシャルネットワークにおける健康情報:ITアプローチに関する調査
- Authors: Vasiliki Papanikou, Panagiotis Papadakos, Theodora Karamanidou, Thanos G. Stavropoulos, Evaggelia Pitoura, Panayiotis Tsaparas,
- Abstract要約: 調査は、関連する研究の体系的なレビューを提供することを目的としている。
まず、ファクトチェックのための手動および自動アプローチを提案する。
次に、偽ニュースの検出方法、コンテンツ、伝搬機能、ソース機能、および誤情報拡散対策の緩和手法について検討する。
- 参考スコア(独自算出の注目度): 2.1440886607229563
- License:
- Abstract: In this paper, we present a comprehensive survey on the pervasive issue of medical misinformation in social networks from the perspective of information technology. The survey aims at providing a systematic review of related research and helping researchers and practitioners navigate through this fast-changing field. Specifically, we first present manual and automatic approaches for fact-checking. We then explore fake news detection methods, using content, propagation features, or source features, as well as mitigation approaches for countering the spread of misinformation. We also provide a detailed list of several datasets on health misinformation and of publicly available tools. We conclude the survey with a discussion on the open challenges and future research directions in the battle against health misinformation.
- Abstract(参考訳): 本稿では,情報技術の観点から,ソーシャルネットワークにおける医療的誤報の広汎化に関する包括的調査を行う。
この調査は、関連する研究の体系的なレビューを提供することと、研究者や実践者がこの急速に変化する分野をナビゲートするのを助けることを目的としている。
具体的には、まず、ファクトチェックのための手動および自動アプローチを提案する。
次に、偽ニュースの検出方法、コンテンツ、伝搬機能、ソース機能、および誤情報拡散対策の緩和手法について検討する。
また、健康上の誤った情報や、公開されているツールに関するいくつかのデータセットの詳細なリストも提供します。
本調査は,健康情報との戦いにおけるオープン課題と今後の研究方向性に関する議論から締めくくった。
関連論文リスト
- A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
論文 参考訳(メタデータ) (2024-03-31T12:44:48Z) - Multi-task Learning for Personal Health Mention Detection on Social
Media [70.23889100356091]
本研究では、マルチタスク学習フレームワークを用いて、利用可能な注釈付きデータを活用し、メインタスクのパフォーマンスを向上させる。
我々は、感情検出を補助タスクとして利用することで、感情情報を対象タスクに組み込むことに重点を置いている。
論文 参考訳(メタデータ) (2022-12-09T23:49:00Z) - Combating Health Misinformation in Social Media: Characterization,
Detection, Intervention, and Open Issues [24.428582199602822]
様々なソーシャルメディアプラットフォームの台頭は、オンライン誤報の拡散も可能にしている。
ソーシャルメディアにおける健康情報の誤報は、さまざまな分野の研究者から注目を集める新たな研究方向となっている。
論文 参考訳(メタデータ) (2022-11-10T01:52:12Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Medical Visual Question Answering: A Survey [55.53205317089564]
VQA(Medicical Visual Question Answering)は、医療用人工知能と一般的なVQA課題の組み合わせである。
医療用VQAシステムは,医療用画像と自然言語による臨床的に関連性のある質問を前提として,妥当かつ説得力のある回答を予測することが期待されている。
論文 参考訳(メタデータ) (2021-11-19T05:55:15Z) - Case Study on Detecting COVID-19 Health-Related Misinformation in Social
Media [7.194177427819438]
本稿では、ソーシャルメディアにおける新型コロナウイルスの健康関連誤報を検出するメカニズムについて述べる。
応用機械学習技術を用いて誤情報検出機構に組み込まれた誤情報テーマと関連キーワードを定義した。
本手法は,健康関連誤報と真情報との分類において,少なくとも78%の精度で有望な結果を示す。
論文 参考訳(メタデータ) (2021-06-12T16:26:04Z) - Disinformation in the Online Information Ecosystem: Detection,
Mitigation and Challenges [35.0667998623823]
一般大衆の大多数は、ニュースや新型コロナウイルスの症状などの問題に関する情報など、ソーシャルメディアのプラットフォームに目を向けている。
偽情報検出と緩和の方向には、かなりの研究が進行中である。
新型コロナウイルスの感染拡大に伴う「不名誉」に焦点をあて、オンライン偽情報問題について論じる。
論文 参考訳(メタデータ) (2020-10-18T21:44:23Z) - Drink Bleach or Do What Now? Covid-HeRA: A Study of Risk-Informed Health
Decision Making in the Presence of COVID-19 Misinformation [23.449057978351945]
我々は健康上の誤報をリスクアセスメントのタスクとみなしている。
各誤報記事の重大さと読者がこの重大さをどう認識するかを考察する。
従来のモデルと最先端モデルを評価し、性能に大きなギャップがあることを示します。
論文 参考訳(メタデータ) (2020-10-17T08:34:57Z) - Towards Domain-Specific Characterization of Misinformation [14.136862418249764]
健康上の誤報が急速に広まると、公衆衛生へのリスクが高まる。
誤報の基本的特徴がドメインによってどう異なるかを認識することが重要である。
本稿では,誤情報のドメイン特化への道筋を示す。
論文 参考訳(メタデータ) (2020-07-29T12:46:45Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
偽ニュースを含む偽ニュースは 爆発的な成長により グローバルな現象になっています
偽情報や偽ニュースを検知する最近の進歩にもかかわらず、その複雑さ、多様性、多様性、事実チェックやアノテーションのコストが原因で、いまだに自明ではない。
論文 参考訳(メタデータ) (2020-01-02T21:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。