Rigid Single-Slice-in-Volume registration via rotation-equivariant 2D/3D feature matching
- URL: http://arxiv.org/abs/2410.18683v1
- Date: Thu, 24 Oct 2024 12:24:27 GMT
- Title: Rigid Single-Slice-in-Volume registration via rotation-equivariant 2D/3D feature matching
- Authors: Stefan Brandstätter, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Helmut Prosch, Georg Langs,
- Abstract summary: We propose a self-supervised 2D/3D registration approach to match a single 2D slice to the corresponding 3D volume.
Results demonstrate the robustness of the proposed slice-in-volume registration on the NSCLC-Radiomics CT and KIRBY21 MRI datasets.
- Score: 3.041742847777409
- License:
- Abstract: 2D to 3D registration is essential in tasks such as diagnosis, surgical navigation, environmental understanding, navigation in robotics, autonomous systems, or augmented reality. In medical imaging, the aim is often to place a 2D image in a 3D volumetric observation to w. Current approaches for rigid single slice in volume registration are limited by requirements such as pose initialization, stacks of adjacent slices, or reliable anatomical landmarks. Here, we propose a self-supervised 2D/3D registration approach to match a single 2D slice to the corresponding 3D volume. The method works in data without anatomical priors such as images of tumors. It addresses the dimensionality disparity and establishes correspondences between 2D in-plane and 3D out-of-plane rotation-equivariant features by using group equivariant CNNs. These rotation-equivariant features are extracted from the 2D query slice and aligned with their 3D counterparts. Results demonstrate the robustness of the proposed slice-in-volume registration on the NSCLC-Radiomics CT and KIRBY21 MRI datasets, attaining an absolute median angle error of less than 2 degrees and a mean-matching feature accuracy of 89% at a tolerance of 3 pixels.
Related papers
- Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction.
We observe that existing approaches, which integrate information across multiple 2D views in the latent space lose valuable signal information during latent encoding. Instead, we simply repeat and the 2D views into higher-channel 3D volumes and approach the 3D reconstruction challenge as a straightforward 3D to 3D generative modeling problem.
This method enables the reconstructed 3D volume to retain valuable information from the 2D inputs, which are passed between channel states in a Swin U
arXiv Detail & Related papers (2024-06-26T15:18:20Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
This paper presents a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image.
A dataset composed of displacement fields and 2D projections of the anatomy is generated from a preoperative scan.
A neural network is trained to recover the unknown 3D displacement field from a single projection image.
arXiv Detail & Related papers (2022-12-15T09:57:19Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis.
Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images.
We propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions.
arXiv Detail & Related papers (2020-12-16T21:39:53Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - Epipolar Transformers [39.98487207625999]
A common approach to localize 3D human joints in a synchronized and calibrated multi-view setup consists of two-steps.
The 2D detector is limited to solving challenging cases which could potentially be better resolved in 3D.
We propose the differentiable "epipolar transformer", which enables the 2D detector to leverage 3D-aware features to improve 2D pose estimation.
arXiv Detail & Related papers (2020-05-10T02:22:54Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
This paper proposes a deep CNN model which simultaneously solves for both 6-DoF absolute camera pose 2D--3D correspondences.
Tests on both real and simulated data have shown that our method substantially outperforms existing approaches.
arXiv Detail & Related papers (2020-03-15T04:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.