ChatSearch: a Dataset and a Generative Retrieval Model for General Conversational Image Retrieval
- URL: http://arxiv.org/abs/2410.18715v1
- Date: Thu, 24 Oct 2024 13:19:22 GMT
- Title: ChatSearch: a Dataset and a Generative Retrieval Model for General Conversational Image Retrieval
- Authors: Zijia Zhao, Longteng Guo, Tongtian Yue, Erdong Hu, Shuai Shao, Zehuan Yuan, Hua Huang, Jing Liu,
- Abstract summary: We investigate the task of general conversational image retrieval on open-domain images.
To advance this task, we curate a dataset called ChatSearch.
This dataset includes a multi-round multimodal conversational context query for each target image.
We propose a generative retrieval model named ChatSearcher, which is trained end-to-end to accept/produce interleaved image-text inputs/outputs.
- Score: 31.663016521987764
- License:
- Abstract: In this paper, we investigate the task of general conversational image retrieval on open-domain images. The objective is to search for images based on interactive conversations between humans and computers. To advance this task, we curate a dataset called ChatSearch. This dataset includes a multi-round multimodal conversational context query for each target image, thereby requiring the retrieval system to find the accurate image from database. Simultaneously, we propose a generative retrieval model named ChatSearcher, which is trained end-to-end to accept/produce interleaved image-text inputs/outputs. ChatSearcher exhibits strong capability in reasoning with multimodal context and can leverage world knowledge to yield visual retrieval results. It demonstrates superior performance on the ChatSearch dataset and also achieves competitive results on other image retrieval tasks and visual conversation tasks. We anticipate that this work will inspire further research on interactive multimodal retrieval systems. Our dataset will be available at https://github.com/joez17/ChatSearch.
Related papers
- Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval [26.585985828583304]
We propose an end-to-end multimodal retrieval system, Ret-XKnow, to endow a text retriever with the ability to understand multimodal queries.
To effectively learn multimodal interaction, we also introduce the Visual Dialogue-to-Retrieval dataset automatically constructed from visual dialogue datasets.
We demonstrate that our approach not only significantly improves retrieval performance in zero-shot settings but also achieves substantial improvements in fine-tuning scenarios.
arXiv Detail & Related papers (2024-11-13T04:32:58Z) - Unified Text-to-Image Generation and Retrieval [96.72318842152148]
We propose a unified framework in the context of Multimodal Large Language Models (MLLMs)
We first explore the intrinsic discrimi abilities of MLLMs and introduce a generative retrieval method to perform retrieval in a training-free manner.
We then unify generation and retrieval in an autoregressive generation way and propose an autonomous decision module to choose the best-matched one between generated and retrieved images.
arXiv Detail & Related papers (2024-06-09T15:00:28Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
arXiv Detail & Related papers (2024-04-29T14:46:35Z) - CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data
Generation [32.10366004426449]
We propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues.
We utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus.
Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models.
arXiv Detail & Related papers (2023-09-13T06:40:24Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z) - Chatting Makes Perfect: Chat-based Image Retrieval [25.452015862927766]
ChatIR is a chat-based image retrieval system that engages in a conversation with the user to elicit information.
Large Language Models are used to generate follow-up questions to an initial image description.
Our system is capable of retrieving the target image from a pool of 50K images with over 78% success rate after 5 dialogue rounds.
arXiv Detail & Related papers (2023-05-31T17:38:08Z) - EDIS: Entity-Driven Image Search over Multimodal Web Content [95.40238328527931]
We introduce textbfEntity-textbfDriven textbfImage textbfSearch (EDIS), a dataset for cross-modal image search in the news domain.
EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description.
arXiv Detail & Related papers (2023-05-23T02:59:19Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - Progressive Learning for Image Retrieval with Hybrid-Modality Queries [48.79599320198615]
Image retrieval with hybrid-modality queries, also known as composing text and image for image retrieval (CTI-IR)
We decompose the CTI-IR task into a three-stage learning problem to progressively learn the complex knowledge for image retrieval with hybrid-modality queries.
Our proposed model significantly outperforms state-of-the-art methods in the mean of Recall@K by 24.9% and 9.5% on the Fashion-IQ and Shoes benchmark datasets respectively.
arXiv Detail & Related papers (2022-04-24T08:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.