Schedule Your Edit: A Simple yet Effective Diffusion Noise Schedule for Image Editing
- URL: http://arxiv.org/abs/2410.18756v3
- Date: Mon, 28 Oct 2024 06:26:54 GMT
- Title: Schedule Your Edit: A Simple yet Effective Diffusion Noise Schedule for Image Editing
- Authors: Haonan Lin, Mengmeng Wang, Jiahao Wang, Wenbin An, Yan Chen, Yong Liu, Feng Tian, Guang Dai, Jingdong Wang, Qianying Wang,
- Abstract summary: Effective editing requires inverting the source image into a latent space, a process often hindered by prediction errors inherent in DDIM inversion.
We introduce the Logistic Schedule, a novel noise schedule designed to eliminate singularities, improve inversion stability, and provide a better noise space for image editing.
Our approach requires no additional retraining and is compatible with various existing editing methods.
- Score: 42.45138713525929
- License:
- Abstract: Text-guided diffusion models have significantly advanced image editing, enabling high-quality and diverse modifications driven by text prompts. However, effective editing requires inverting the source image into a latent space, a process often hindered by prediction errors inherent in DDIM inversion. These errors accumulate during the diffusion process, resulting in inferior content preservation and edit fidelity, especially with conditional inputs. We address these challenges by investigating the primary contributors to error accumulation in DDIM inversion and identify the singularity problem in traditional noise schedules as a key issue. To resolve this, we introduce the Logistic Schedule, a novel noise schedule designed to eliminate singularities, improve inversion stability, and provide a better noise space for image editing. This schedule reduces noise prediction errors, enabling more faithful editing that preserves the original content of the source image. Our approach requires no additional retraining and is compatible with various existing editing methods. Experiments across eight editing tasks demonstrate the Logistic Schedule's superior performance in content preservation and edit fidelity compared to traditional noise schedules, highlighting its adaptability and effectiveness.
Related papers
- Edicho: Consistent Image Editing in the Wild [90.42395533938915]
Edicho steps in with a training-free solution based on diffusion models.
It features a fundamental design principle of using explicit image correspondence to direct editing.
arXiv Detail & Related papers (2024-12-30T16:56:44Z) - Uniform Attention Maps: Boosting Image Fidelity in Reconstruction and Editing [66.48853049746123]
We analyze reconstruction from a structural perspective and propose a novel approach that replaces traditional cross-attention with uniform attention maps.
Our method effectively minimizes distortions caused by varying text conditions during noise prediction.
Experimental results demonstrate that our approach not only excels in achieving high-fidelity image reconstruction but also performs robustly in real image composition and editing scenarios.
arXiv Detail & Related papers (2024-11-29T12:11:28Z) - Taming Rectified Flow for Inversion and Editing [57.3742655030493]
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation.
Despite their robust generative capabilities, these models often struggle with inaccuracies.
We propose RF-r, a training-free sampler that effectively enhances inversion precision by mitigating the errors in the inversion process of rectified flow.
arXiv Detail & Related papers (2024-11-07T14:29:02Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
We introduce textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv), a novel framework that inverts and edits real images tailored to specific editing tasks.
ToDInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability.
arXiv Detail & Related papers (2024-08-23T22:16:34Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models [44.26371926512843]
We introduce a novel free approach that employs progressive $textbfFre$qu$textbfe$ncy truncation to refine the guidance of $textbfDiff$usion models for universal editing tasks.
Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images.
arXiv Detail & Related papers (2024-04-18T04:47:28Z) - Noise Map Guidance: Inversion with Spatial Context for Real Image
Editing [23.513950664274997]
Text-guided diffusion models have become a popular tool in image synthesis, known for producing high-quality and diverse images.
Their application to editing real images often encounters hurdles due to the text condition deteriorating the reconstruction quality and subsequently affecting editing fidelity.
We present Noise Map Guidance (NMG), an inversion method rich in a spatial context, tailored for real-image editing.
arXiv Detail & Related papers (2024-02-07T07:16:12Z) - High-Fidelity Diffusion-based Image Editing [19.85446433564999]
The editing performance of diffusion models tends to be no more satisfactory even with increasing denoising steps.
We propose an innovative framework where a Markov module is incorporated to modulate diffusion model weights with residual features.
We introduce a novel learning paradigm aimed at minimizing error propagation during the editing process, which trains the editing procedure in a manner similar to denoising score-matching.
arXiv Detail & Related papers (2023-12-25T12:12:36Z) - Tuning-Free Inversion-Enhanced Control for Consistent Image Editing [44.311286151669464]
We present a novel approach called Tuning-free Inversion-enhanced Control (TIC)
TIC correlates features from the inversion process with those from the sampling process to mitigate the inconsistency in DDIM reconstruction.
We also propose a mask-guided attention concatenation strategy that combines contents from both the inversion and the naive DDIM editing processes.
arXiv Detail & Related papers (2023-12-22T11:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.