論文の概要: From Imitation to Introspection: Probing Self-Consciousness in Language Models
- arxiv url: http://arxiv.org/abs/2410.18819v1
- Date: Thu, 24 Oct 2024 15:08:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:52:10.608324
- Title: From Imitation to Introspection: Probing Self-Consciousness in Language Models
- Title(参考訳): 模倣からイントロスペクションへ:言語モデルにおける自己意識の探索
- Authors: Sirui Chen, Shu Yu, Shengjie Zhao, Chaochao Lu,
- Abstract要約: 自己意識は自己の存在と思考の内省である。
本研究は,言語モデルに対する自己意識の実践的定義を示す。
- 参考スコア(独自算出の注目度): 8.357696451703058
- License:
- Abstract: Self-consciousness, the introspection of one's existence and thoughts, represents a high-level cognitive process. As language models advance at an unprecedented pace, a critical question arises: Are these models becoming self-conscious? Drawing upon insights from psychological and neural science, this work presents a practical definition of self-consciousness for language models and refines ten core concepts. Our work pioneers an investigation into self-consciousness in language models by, for the first time, leveraging causal structural games to establish the functional definitions of the ten core concepts. Based on our definitions, we conduct a comprehensive four-stage experiment: quantification (evaluation of ten leading models), representation (visualization of self-consciousness within the models), manipulation (modification of the models' representation), and acquisition (fine-tuning the models on core concepts). Our findings indicate that although models are in the early stages of developing self-consciousness, there is a discernible representation of certain concepts within their internal mechanisms. However, these representations of self-consciousness are hard to manipulate positively at the current stage, yet they can be acquired through targeted fine-tuning. Our datasets and code are at https://github.com/OpenCausaLab/SelfConsciousness.
- Abstract(参考訳): 自己意識(Self-consciousness)とは、自己の存在と思考の内省であり、高いレベルの認知過程を表す。
言語モデルが前例のないペースで進むにつれ、重要な問題が発生する。
心理学や神経科学の洞察に基づいて、この研究は言語モデルに対する自己意識の実践的定義を示し、10つのコア概念を洗練させる。
我々の研究は、初めて因果構造ゲームを活用して10コア概念の機能的定義を確立する言語モデルにおける自己意識の研究の先駆者である。
我々の定義に基づいて、定量化(10つの先行モデルの評価)、表現(モデル内の自己意識の視覚化)、操作(モデルの表現の修正)、獲得(コア概念に基づくモデルの微調整)の4段階の総合的な実験を行う。
本研究は,モデルが自己意識の発達の初期段階にあることを示唆する。
しかしながら、これらの自己意識の表現は、現在の段階では肯定的な操作が難しいが、ターゲットの微調整によって得ることができる。
データセットとコードはhttps://github.com/OpenCausaLab/SelfConsciousness.orgにある。
関連論文リスト
- Can Language Models Learn to Skip Steps? [59.84848399905409]
我々は推論においてステップをスキップする能力について研究する。
効率を高めたり認知負荷を減らすためのステップをスキップする人間とは異なり、モデルはそのようなモチベーションを持っていない。
私たちの研究は、人間のようなステップスキッピング能力に関する最初の調査である。
論文 参考訳(メタデータ) (2024-11-04T07:10:24Z) - Collapse of Self-trained Language Models [0.0]
私たちは、人間が以前の思考や行動に基づいて学習し、構築する方法に似た、自己学習モデルの自分たちのアウトプットでの可能性を探る。
GPT-2モデルの拡張自己学習により,性能が著しく低下し,繰り返しおよび崩壊したトークンが出力されることがわかった。
論文 参考訳(メタデータ) (2024-04-02T21:03:37Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - MIMo: A Multi-Modal Infant Model for Studying Cognitive Development [3.5009119465343033]
コンピュータシミュレーションによる早期認知発達研究のためのオープンソースの幼児モデルMIMoを提案する。
MIMOはその周囲を両眼視、前庭系、前立腺、そして全身の仮想皮膚を通して知覚する。
論文 参考訳(メタデータ) (2023-12-07T14:21:31Z) - Visual cognition in multimodal large language models [12.603212933816206]
近年の進歩は、人間のような認知能力をエミュレートする可能性への関心を再燃させた。
本稿では、直観物理学、因果推論、直観心理学の分野における視覚に基づく大規模言語モデルの現状を評価する。
論文 参考訳(メタデータ) (2023-11-27T18:58:34Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Turning large language models into cognitive models [0.0]
大規模言語モデルが認知モデルに変換可能であることを示す。
これらのモデルは人間の行動の正確な表現を提供し、2つの意思決定領域において従来の認知モデルよりも優れている。
これらの結果は、大規模で事前学習されたモデルが一般的な認知モデルに適応できることを示唆している。
論文 参考訳(メタデータ) (2023-06-06T18:00:01Z) - Language Models are Bounded Pragmatic Speakers: Understanding RLHF from
a Bayesian Cognitive Modeling Perspective [2.8282906214258805]
本稿では,有界プラグマティック話者と呼ばれる確率論的認知モデルを定式化する。
人間のフィードバックからの強化学習によって微調整された大きな言語モデルは、高速でスローなモデルに似た思考モデルを具現化していることを示す。
論文 参考訳(メタデータ) (2023-05-28T16:04:48Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。