論文の概要: Exploring the Universe with SNAD: Anomaly Detection in Astronomy
- arxiv url: http://arxiv.org/abs/2410.18875v1
- Date: Thu, 24 Oct 2024 16:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:26.888341
- Title: Exploring the Universe with SNAD: Anomaly Detection in Astronomy
- Title(参考訳): SNADによる宇宙探査:天文学における異常検出
- Authors: Alina A. Volnova, Patrick D. Aleo, Anastasia Lavrukhina, Etienne Russeil, Timofey Semenikhin, Emmanuel Gangler, Emille E. O. Ishida, Matwey V. Kornilov, Vladimir Korolev, Konstantin Malanchev, Maria V. Pruzhinskaya, Sreevarsha Sreejith,
- Abstract要約: SNADは、大規模な調査で天文異常を検出することに焦点を当てた国際プロジェクトである。
本稿では,SNADプロジェクトの概要と,チームによる数年にわたる成果について概説する。
- 参考スコア(独自算出の注目度): 0.9562447539143751
- License:
- Abstract: SNAD is an international project with a primary focus on detecting astronomical anomalies within large-scale surveys, using active learning and other machine learning algorithms. The work carried out by SNAD not only contributes to the discovery and classification of various astronomical phenomena but also enhances our understanding and implementation of machine learning techniques within the field of astrophysics. This paper provides a review of the SNAD project and summarizes the advancements and achievements made by the team over several years.
- Abstract(参考訳): SNADは、大規模な調査において、アクティブラーニングやその他の機械学習アルゴリズムを使用して天文異常を検出することに焦点を当てた国際プロジェクトである。
SNADが行った研究は、様々な天文学現象の発見と分類に貢献するだけでなく、天体物理学の分野における機械学習技術の理解と実装の促進にも貢献する。
本稿では,SNADプロジェクトの概要と,チームによる数年にわたる成果について概説する。
関連論文リスト
- Rewrite the Stars [70.48224347277014]
近年の研究では、ネットワーク設計における「スター操作」の未解決の可能性に注意が向けられている。
本研究は、高次元の非線形特徴空間に入力をマッピングする恒星操作の能力を明らかにすることを試みる。
StarNetはシンプルだがパワフルなプロトタイプで、素晴らしいパフォーマンスと低レイテンシを誇示しています。
論文 参考訳(メタデータ) (2024-03-29T04:10:07Z) - Constructing Impactful Machine Learning Research for Astronomy: Best
Practices for Researchers and Reviewers [0.0]
機械学習は、天文学のコミュニティにとって、急速に選択のツールになりつつある。
本稿では、機械学習モデルの実装方法と結果の報告方法について、天文学コミュニティにプライマーを提供する。
論文 参考訳(メタデータ) (2023-10-19T07:04:36Z) - Assessing Exoplanet Habitability through Data-driven Approaches: A
Comprehensive Literature Review [0.0]
レビューは、太陽系外惑星研究における新たなトレンドと進歩を照らすことを目的としている。
太陽系外惑星の検出、分類、可視化の相互作用に焦点を当てる。
太陽系外惑星研究で使用される機械学習アプローチの幅広いスペクトルを記述する。
論文 参考訳(メタデータ) (2023-05-18T17:18:15Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - Radio astronomical images object detection and segmentation: A benchmark
on deep learning methods [5.058069142315917]
本研究では,電波干渉計による天体画像に適用した,最も肯定的な深層学習手法の性能について検討し,自動音源検出の課題を解決する。
目標は、予測性能と計算効率の観点から既存の技術の概要を、彼らの研究に機械学習を使いたいと考える天体物理学コミュニティの科学者に提供することである。
論文 参考訳(メタデータ) (2023-03-08T10:55:24Z) - Applications of AI in Astronomy [0.0]
本稿では、天文学、天体物理学、宇宙論における機械学習(ML)およびその他のAI手法の使用の概要について述べる。
過去10年間で、さまざまなML/AI応用を含む天文学文献が指数関数的に成長してきた。
データの複雑さが増し続ければ、協力的な人間とAIの発見につながるさらなる進歩が期待できる。
論文 参考訳(メタデータ) (2022-12-03T00:38:59Z) - Astronomia ex machina: a history, primer, and outlook on neural networks
in astronomy [0.0]
我々は天文学における接続性の進化をその3つの波で追跡した。
我々は、天文学的な応用のために微調整されたGPTライクな基礎モデルの採用を論じる。
論文 参考訳(メタデータ) (2022-11-07T19:00:00Z) - Artificial Intelligence and Natural Language Processing and
Understanding in Space: Four ESA Case Studies [48.53582660901672]
本稿では,空間文書から情報を自動的に抽出するための,人工知能と自然言語処理と理解に基づく方法論的枠組みを提案する。
ケーススタディはミッションデザイン、品質保証、長期データ保存、オープンスペースイノベーションプラットフォームなど、ESAのさまざまな機能領域で実装されている。
論文 参考訳(メタデータ) (2022-10-07T15:50:17Z) - STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond [78.129039340528]
本稿では,映像予測などのための時間認識ユニット(STAU)を提案する。
我々のSTAUは、性能と効率の点で、全てのタスクにおける他のメソッドよりも優れています。
論文 参考訳(メタデータ) (2022-04-20T13:42:51Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Agile Earth observation satellite scheduling over 20 years:
formulations, methods and future directions [69.47531199609593]
高度姿勢操作能力を持つアジャイル衛星は、新世代の地球観測衛星(EOS)である
衛星技術の継続的な改善と打ち上げコストの削減により、アジャイルEOS(AEOS)の開発が加速した。
論文 参考訳(メタデータ) (2020-03-13T09:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。