ArterialNet: Reconstructing Arterial Blood Pressure Waveform with Wearable Pulsatile Signals, a Cohort-Aware Approach
- URL: http://arxiv.org/abs/2410.18895v2
- Date: Sun, 27 Oct 2024 12:47:53 GMT
- Title: ArterialNet: Reconstructing Arterial Blood Pressure Waveform with Wearable Pulsatile Signals, a Cohort-Aware Approach
- Authors: Sicong Huang, Roozbeh Jafari, Bobak J. Mortazavi,
- Abstract summary: ArterialNet integrates generalized pulsatile-to-ABP signal translation and personalized feature extraction using hybrid loss functions and regularization.
We validated ArterialNet using the MIMIC-III dataset and achieved a root mean square error (RMSE) of 5.41 mmHg, with at least a 58% lower standard deviation.
- Score: 10.186630118011692
- License:
- Abstract: Continuous arterial blood pressure (ABP) monitoring is invasive but essential for hemodynamic monitoring. Recent techniques have reconstructed ABP non-invasively using pulsatile signals but produced inaccurate systolic and diastolic blood pressure (SBP and DBP) values and were sensitive to individual variability. ArterialNet integrates generalized pulsatile-to-ABP signal translation and personalized feature extraction using hybrid loss functions and regularization. We validated ArterialNet using the MIMIC-III dataset and achieved a root mean square error (RMSE) of 5.41 mmHg, with at least a 58% lower standard deviation. ArterialNet reconstructed ABP with an RMSE of 7.99 mmHg in remote health scenarios. ArterialNet achieved superior performance in ABP reconstruction and SBP and DBP estimations, with significantly reduced subject variance, demonstrating its potential in remote health settings. We also ablated ArterialNet architecture to investigate the contributions of each component and evaluated its translational impact and robustness by conducting a series of ablations on data quality and availability.
Related papers
- Adversarial Contrastive Learning Based Physics-Informed Temporal Networks for Cuffless Blood Pressure Estimation [37.94387581519217]
We introduce a novel physics-informed temporal network(PITN) with adversarial contrastive learning to enable precise BP estimation with very limited data.
We then employ adversarial training to generate extra physiological time series data, improving PITN's robustness in the face of sparse subject-specific data.
arXiv Detail & Related papers (2024-08-16T02:17:21Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension.
Recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs) have led to a surge of interest in developing data-driven solutions.
This paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation.
arXiv Detail & Related papers (2024-04-15T00:36:33Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
This study introduces four innovative strategies to enhance smartphone-based photoplethysmography for blood pressure estimation (SPW-BP)
We employ often-neglected data-quality improvement techniques, such as height normalization, corrupt data removal, and boundary signal reconstruction.
Correlation and SHAP analysis identified key features for improving BP estimation.
However, Bland-Altman analysis revealed systematic biases, and MAE analysis showed that the results did not meet AAMI and BHS accuracy standards.
arXiv Detail & Related papers (2024-01-20T05:05:17Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
Most existing methods used in the hospitals for continuous monitoring of Blood Pressure (BP) are invasive.
In this study, we explored the applicability of autoencoders in predicting BP from non-invasively collectible signals such as Photoplethysmogram ( PPG) and ECG signals.
It was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with the state-of-the-art performance on a very large dataset.
arXiv Detail & Related papers (2021-11-12T19:34:20Z) - A Novel Clustering-Based Algorithm for Continuous and Non-invasive
Cuff-Less Blood Pressure Estimation [0.0]
We developed a method for estimating blood pressure based on the features extracted from Electrocardiogram (ECG) signals and the Arterial Blood Pressure (ABP) data.
We evaluated and compared the findings to create the model with the highest accuracy by applying the clustering approach.
The results show that the proposed clustering approach helps obtain more accurate estimates of Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
arXiv Detail & Related papers (2021-10-13T19:16:10Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions.
We propose an advanced data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals.
arXiv Detail & Related papers (2021-07-30T22:45:34Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
Office Blood Pressure Measurement (OBP) is a technique performed in-office with the sphygmomanometer, while Ambulatory Blood Pressure Monitoring (ABPM) is a technique that measures blood pressure during 24h.
The aim of this study is to examine the possible influence of sex on the discrepancies between OBP and ABPM in 872 subjects with known or suspected hypertension.
arXiv Detail & Related papers (2021-06-04T10:09:44Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.