Quantum Many-Body Scars beyond the PXP model in Rydberg simulators
- URL: http://arxiv.org/abs/2410.18913v1
- Date: Thu, 24 Oct 2024 17:04:42 GMT
- Title: Quantum Many-Body Scars beyond the PXP model in Rydberg simulators
- Authors: Aron Kerschbaumer, Marko Ljubotina, Maksym Serbyn, Jean-Yves Desaules,
- Abstract summary: QMBSs are non-thermal highly excited eigenstates that coexist with typical eigenstates in the spectrum of many-body Hamiltonians.
QMBSs reported here may be experimentally probed using Rydberg atom simulator in the regime of longer-range Rydberg blockades.
- Score: 0.0
- License:
- Abstract: Persistent revivals recently observed in Rydberg atom simulators have challenged our understanding of thermalization and attracted much interest to the concept of quantum many-body scars (QMBSs). QMBSs are non-thermal highly excited eigenstates that coexist with typical eigenstates in the spectrum of many-body Hamiltonians, and have since been reported in multiple theoretical models, including the so-called PXP model, approximately realized by Rydberg simulators. At the same time, questions of how common QMBSs are and in what models they are physically realized remain open. In this Letter, we demonstrate that QMBSs exist in a broader family of models that includes and generalizes PXP to longer-range constraints and states with different periodicity. We show that in each model, multiple QMBS families can be found. Each of them relies on a different approximate $\mathfrak{su}(2)$ algebra, leading to oscillatory dynamics in all cases. However, in contrast to the PXP model, their observation requires launching dynamics from weakly entangled initial states rather than from a product state. QMBSs reported here may be experimentally probed using Rydberg atom simulator in the regime of longer-range Rydberg blockades.
Related papers
- Towers of Quantum Many-body Scars from Integrable Boundary States [0.3243026006311523]
We construct models with multiple quantum many-body scars (QMBS) using integrable boundary states(IBS)
We focus on the tilted N'eel states, which are parametrized IBS of the spin-1/2 Heisenberg model, and show that these states can be used to construct a tower of scar states.
Our results provide novel insights into constructing QMBS using IBS, thereby illuminating the connection between QMBS and integrable models.
arXiv Detail & Related papers (2024-11-02T14:42:22Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Quantum many-body scars from unstable periodic orbits [30.38539960317671]
Unstable periodic orbits play a key role in the theory of chaos.
We find the first quantum many-body scars originating from UPOs of a chaotic phase space.
arXiv Detail & Related papers (2024-01-12T19:00:02Z) - Asymptotic Quantum Many-Body Scars [0.0]
We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with low entanglement at finite size.
We show that the states in the neighboring part of the energy spectrum can be superposed to construct entire families of low-entanglement states.
arXiv Detail & Related papers (2023-03-09T16:47:22Z) - Bridging quantum criticality via many-body scarring [0.11083289076967892]
Some initial states give rise to persistent quantum revivals -- a type of weak ergodicity breaking known as quantum many-body scarring' (QMBS)
We show that QMBS gets destroyed by tuning the system to a quantum critical point, echoing the disappearance of long-range order in the system's ground state at equilibrium.
We demonstrate the existence of a continuous family of initial states that give rise to QMBS and formulate a ramping protocol that can be used to prepare such states in experiment.
arXiv Detail & Related papers (2023-01-09T19:02:41Z) - Quantum Many-Body Scars and Hilbert Space Fragmentation: A Review of
Exact Results [0.0]
Quantum Many-Body Scars (QMBS) have shown that a weak violation of ergodicity can lead to rich experimental and theoretical physics.
We provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems.
We also review Hilbert Space Fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors.
arXiv Detail & Related papers (2021-09-01T18:00:02Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Exact Floquet quantum many-body scars under Rydberg blockade [0.0]
Quantum many-body scars have attracted much interest as a violation of the eigenstate thermalization hypothesis (ETH)
We construct a model hosting exact Floquet quantum many-body scars, which violate the Floquet version of ETH.
We show that there exists a four-dimensional subspace which completely avoids thermalization to infinite temperature.
arXiv Detail & Related papers (2020-04-09T09:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.