Towers of Quantum Many-body Scars from Integrable Boundary States
- URL: http://arxiv.org/abs/2411.01270v1
- Date: Sat, 02 Nov 2024 14:42:22 GMT
- Title: Towers of Quantum Many-body Scars from Integrable Boundary States
- Authors: Kazuyuki Sanada, Yuan Miao, Hosho Katsura,
- Abstract summary: We construct models with multiple quantum many-body scars (QMBS) using integrable boundary states(IBS)
We focus on the tilted N'eel states, which are parametrized IBS of the spin-1/2 Heisenberg model, and show that these states can be used to construct a tower of scar states.
Our results provide novel insights into constructing QMBS using IBS, thereby illuminating the connection between QMBS and integrable models.
- Score: 0.3243026006311523
- License:
- Abstract: We construct several models with multiple quantum many-body scars (QMBS) using integrable boundary states~(IBS). We focus on the tilted N\'eel states, which are parametrized IBS of the spin-1/2 Heisenberg model, and show that these states can be used to construct a tower of scar states. Our models exhibit periodic revival dynamics, showcasing a characteristic behavior of superpositions of QMBS. Furthermore, the tower of QMBS found in this study possesses a restricted spectrum generating algebra (RSGA) structure, indicating that QMBS are equally spaced in energy. This approach can be extended to two-dimensional models, which can be decomposed into an array of one-dimensional models. In this case, the tilted N\'eel states again serve as parent states for multiple scar states. These states demonstrate low entanglement entropy, marking them as exact scar states. Notably, their entanglement entropy adheres to the sub-volume law, further solidifying the nonthermal properties of QMBS. Our results provide novel insights into constructing QMBS using IBS, thereby illuminating the connection between QMBS and integrable models.
Related papers
- Quantum many-body scars in the Bose-Hubbard model with a three-body
constraint [0.0]
We uncover the exact athermal eigenstates in the Bose-Hubbard (BH) model with a three-body constraint.
We find that the QMBS state exists as the lowest-energy eigenstate of the effective model in the highest-energy sector.
arXiv Detail & Related papers (2023-08-23T14:10:43Z) - Asymptotic Quantum Many-Body Scars [0.0]
We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with low entanglement at finite size.
We show that the states in the neighboring part of the energy spectrum can be superposed to construct entire families of low-entanglement states.
arXiv Detail & Related papers (2023-03-09T16:47:22Z) - Bridging quantum criticality via many-body scarring [0.11083289076967892]
Some initial states give rise to persistent quantum revivals -- a type of weak ergodicity breaking known as quantum many-body scarring' (QMBS)
We show that QMBS gets destroyed by tuning the system to a quantum critical point, echoing the disappearance of long-range order in the system's ground state at equilibrium.
We demonstrate the existence of a continuous family of initial states that give rise to QMBS and formulate a ramping protocol that can be used to prepare such states in experiment.
arXiv Detail & Related papers (2023-01-09T19:02:41Z) - Quantum many-body scars of spinless fermions with density-assisted
hopping in higher dimensions [0.0]
We introduce a class of spinless fermion models that exhibit quantum many-body scars (QMBS)
QMBS are responsible for the nonthermal nature of the system by studying the entanglement entropy and correlation functions.
As another characterization of the QMBS, we give a parent Hamiltonian for which the QMBS are unique ground states.
arXiv Detail & Related papers (2022-07-13T08:35:53Z) - Weak Ergodicity Breaking in the Schwinger Model [0.0]
We study QMBS in spin-$S$ $mathrmU(1)$ quantum link models with staggered fermions.
We find that QMBS persist at $S>1/2$, with the resonant scarring regime, which occurs for a zero-mass quench.
Our results conclusively show that QMBS exist in a wide class of lattice gauge theories in one spatial dimension.
arXiv Detail & Related papers (2022-03-16T18:00:01Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.