論文の概要: SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors
- arxiv url: http://arxiv.org/abs/2406.14598v1
- Date: Thu, 20 Jun 2024 17:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:37:49.045199
- Title: SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors
- Title(参考訳): SORRY-Bench: 大規模言語モデルの安全性をシステム的に評価する
- Authors: Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang, Udari Madhushani Sehwag, Kaixuan Huang, Luxi He, Boyi Wei, Dacheng Li, Ying Sheng, Ruoxi Jia, Bo Li, Kai Li, Danqi Chen, Peter Henderson, Prateek Mittal,
- Abstract要約: 安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
- 参考スコア(独自算出の注目度): 64.9938658716425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.
- Abstract(参考訳): 安全でないユーザ要求を認識して拒否する、整列した大規模言語モデル(LLM)の能力を評価することは、安全でポリシーに準拠したデプロイメントに不可欠である。
しかし、既存の評価努力は、提案したベンチマークであるSORRY-Benchで対処する3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い分類をしばしば使用し、いくつかのきめ細かいトピックを過剰に表現している。
例えば、私たちが評価した10の既存のデータセットのうち、自己修復命令の拒否テストは不正行為のテストよりも3倍少ない。
SORRY-Benchは、45の潜在的な安全でないトピックと450のクラスバランスの安全でない命令の詳細な分類法を使用して、これを改善している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
SORRY-Benchに20種類の言語拡張を加え,これらの効果を系統的に検討した。
第3に、既存の評価は計算コストのかかる大規模なLCM(例えば、GPT-4)に依存している。
高速かつ高精度な自動安全評価器の設計選択について検討する。
7K以上のアノテーションを収集し,多様なLCM-as-a-judge設計のメタ評価を行うことにより,微調整 7B LLM が GPT-4 スケール LLM に匹敵する精度で計算コストを低減できることを示す。
そこで我々は,SORRY-Bench上で40以上のプロプライエタリかつオープンソース LLM を評価し,その特性を解析した。
我々は, LLMの安全性を, バランスよく, 粒状で, 効率よく, 体系的に評価するためのビルディングブロックを提供することを願っている。
関連論文リスト
- SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
テキスト生成タスクにおける評価器として,Large Language Models (LLMs) の有効性を検討する。
我々は,4つの重要な能力を評価する上で,評価用LLMの習熟度を評価するための新しいフレームワークであるFBIを提案する。
論文 参考訳(メタデータ) (2024-06-19T10:59:48Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCHは、大きな言語モデルを評価するためのベンチマークである。
これには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
また,15個のLPMの信頼性を評価し,GLM4が最も優れていることを発見した。
論文 参考訳(メタデータ) (2024-06-18T16:50:38Z) - MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models [39.97454990633856]
本稿では,MLLMの多次元安全性評価スイートであるMLLMGuardを紹介する。
バイリンガル画像テキスト評価データセット、推論ユーティリティ、軽量評価器が含まれている。
13種類の先進モデルに対する評価結果は,MLLMが安全かつ責任を負うことができるまでには,まだかなりの道のりを歩んでいることを示唆している。
論文 参考訳(メタデータ) (2024-06-11T13:41:33Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。