Schema-Guided Culture-Aware Complex Event Simulation with Multi-Agent Role-Play
- URL: http://arxiv.org/abs/2410.18935v1
- Date: Thu, 24 Oct 2024 17:21:43 GMT
- Title: Schema-Guided Culture-Aware Complex Event Simulation with Multi-Agent Role-Play
- Authors: Sha Li, Revanth Gangi Reddy, Khanh Duy Nguyen, Qingyun Wang, May Fung, Chi Han, Jiawei Han, Kartik Natarajan, Clare R. Voss, Heng Ji,
- Abstract summary: Complex news events, such as natural disasters and socio-political conflicts, require swift responses from the government and society.
We develop a controllable complex news event simulator guided by both the event schema representing domain knowledge.
We introduce a geo-diverse commonsense and cultural norm-aware knowledge enhancement component.
- Score: 69.57968387772428
- License:
- Abstract: Complex news events, such as natural disasters and socio-political conflicts, require swift responses from the government and society. Relying on historical events to project the future is insufficient as such events are sparse and do not cover all possible conditions and nuanced situations. Simulation of these complex events can help better prepare and reduce the negative impact. We develop a controllable complex news event simulator guided by both the event schema representing domain knowledge about the scenario and user-provided assumptions representing case-specific conditions. As event dynamics depend on the fine-grained social and cultural context, we further introduce a geo-diverse commonsense and cultural norm-aware knowledge enhancement component. To enhance the coherence of the simulation, apart from the global timeline of events, we take an agent-based approach to simulate the individual character states, plans, and actions. By incorporating the schema and cultural norms, our generated simulations achieve much higher coherence and appropriateness and are received favorably by participants from a humanitarian assistance organization.
Related papers
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - DAMe: Personalized Federated Social Event Detection with Dual Aggregation Mechanism [55.45581907514175]
This paper proposes a personalized federated learning framework with a dual aggregation mechanism for social event detection, namely DAMe.
We introduce a global aggregation strategy to provide clients with maximum external knowledge of their preferences.
In addition, we incorporate a global-local event-centric constraint to prevent local overfitting and client-drift''
arXiv Detail & Related papers (2024-09-01T04:56:41Z) - Simulating Public Administration Crisis: A Novel Generative Agent-Based
Simulation System to Lower Technology Barriers in Social Science Research [0.0]
This article proposes a social simulation paradigm based on the GPT-3.5 large language model.
It involves constructing Generative Agents that emulate human cognition, memory, and decision-making frameworks.
Agents exhibit personalized customization, and public events are seamlessly incorporated through natural language processing.
arXiv Detail & Related papers (2023-11-12T20:48:01Z) - Harvesting Event Schemas from Large Language Models [38.56772862516626]
Event schema provides a conceptual, structural and formal language to represent events and model the world event knowledge.
It is challenging to automatically induce high-quality and high-coverage event schemas due to the open nature of real-world events, the diversity of event expressions, and the sparsity of event knowledge.
We propose a new paradigm for event schema induction -- knowledge harvesting from large-scale pre-trained language models.
arXiv Detail & Related papers (2023-05-12T06:51:05Z) - Modeling Complex Event Scenarios via Simple Entity-focused Questions [58.16787028844743]
We propose a question-guided generation framework that models events in complex scenarios as answers to questions about participants.
At any step in the generation process, the framework uses the previously generated events as context, but generates the next event as an answer to one of three questions.
Our empirical evaluation shows that this question-guided generation provides better coverage of participants, diverse events within a domain, and comparable perplexities for modeling event sequences.
arXiv Detail & Related papers (2023-02-14T15:48:56Z) - POQue: Asking Participant-specific Outcome Questions for a Deeper
Understanding of Complex Events [26.59626509200256]
We show that crowd workers are able to infer the collective impact of salient events that make up the situation.
By creating a multi-step interface, we collect a high quality annotated dataset of 8K short newswire narratives and ROCStories.
Our dataset, POQue, enables the exploration and development of models that address multiple aspects of semantic understanding.
arXiv Detail & Related papers (2022-12-05T22:23:27Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
We present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning.
A core component of our work is to introduce textitagency, such that it is simple to define and create complex scenarios.
We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment.
arXiv Detail & Related papers (2021-06-25T00:21:41Z) - A modular framework for extreme weather generation [0.0]
Machine learning techniques can play a critical role in resilience planning.
This paper proposes a modular framework that relies on interchangeable components to produce extreme weather event scenarios.
arXiv Detail & Related papers (2021-02-05T15:12:10Z) - Joint Constrained Learning for Event-Event Relation Extraction [94.3499255880101]
We propose a joint constrained learning framework for modeling event-event relations.
Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations.
We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data.
arXiv Detail & Related papers (2020-10-13T22:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.