論文の概要: Adjusted Overfitting Regression
- arxiv url: http://arxiv.org/abs/2410.18950v1
- Date: Thu, 24 Oct 2024 17:50:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:10.324092
- Title: Adjusted Overfitting Regression
- Title(参考訳): Adjusted Overfitting Regression
- Authors: Dylan Wilson,
- Abstract要約: 本稿では「距離ベースレグレッション」を通じて過度な適合と不適合を調整できる新しい回帰形式を導入する。
過度に適合すると、しばしば誤ったパターンが不正確な結果を引き起こすため、過剰適合を最小限に抑える新しいアプローチによって、より正確な予測が導き出される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, I will introduce a new form of regression, that can adjust overfitting and underfitting through, "distance-based regression." Overfitting often results in finding false patterns causing inaccurate results, so by having a new approach that minimizes overfitting, more accurate predictions can be derived. Then I will proceed with a test of my regression form and show additional ways to optimize the regression. Finally, I will apply my new technique to a specific data set to demonstrate its practical value.
- Abstract(参考訳): 本稿では「距離ベースレグレッション」を通じて過度な適合と不適合を調整できる新しい回帰形式を導入する。
過度に適合すると、しばしば誤ったパターンが不正確な結果を引き起こすため、過剰適合を最小限に抑える新しいアプローチによって、より正確な予測が導き出される。
次に、回帰フォームのテストを進め、回帰を最適化する追加の方法を示します。
最後に、私の新しいテクニックを特定のデータセットに適用して、その実用的価値を示します。
関連論文リスト
- Generalized Regression with Conditional GANs [2.4171019220503402]
本稿では,学習データセットにおける特徴ラベルペアと,対応する入力と組み合わせて出力を区別できない予測関数を学習することを提案する。
回帰に対するこのアプローチは、私たちが適合するデータの分布に対する仮定を減らし、表現能力が向上することを示す。
論文 参考訳(メタデータ) (2024-04-21T01:27:47Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Adaptive Optimization for Prediction with Missing Data [6.800113478497425]
適応線形回帰モデルの中には,命令規則と下流線形回帰モデルを同時に学習するのと等価なものもある。
ランダムにデータの欠落が強くない環境では,本手法はサンプル外精度を2~10%向上させる。
論文 参考訳(メタデータ) (2024-02-02T16:35:51Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - ResMem: Learn what you can and memorize the rest [79.19649788662511]
本稿では,既存の予測モデルを拡張するための残差記憶アルゴリズム(ResMem)を提案する。
構築によって、ResMemはトレーニングラベルを明示的に記憶することができる。
ResMemは、元の予測モデルのテストセットの一般化を一貫して改善することを示す。
論文 参考訳(メタデータ) (2023-02-03T07:12:55Z) - High-dimensional regression with potential prior information on variable
importance [0.0]
順序付けによって示されるモデルの列に適合する簡単なスキームを提案する。
リッジ回帰を用いた場合の全てのモデルの適合に対する計算コストは、リッジ回帰の1つの適合に留まらないことを示す。
モデル全体の整合性を大幅に高速化するために,従来の整合性を利用したラッソ回帰の戦略を述べる。
論文 参考訳(メタデータ) (2021-09-23T10:34:37Z) - Human Pose Regression with Residual Log-likelihood Estimation [48.30425850653223]
本稿では,Residual Log-likelihood Estimation (RLE) を用いた新たな回帰パラダイムを提案する。
RLEは、トレーニングプロセスを容易にするために、未参照の基盤となる分布ではなく、分布の変化を学習する。
従来の回帰パラダイムと比較して、RLEによる回帰はテスト時間オーバーヘッドを伴わずに、MSCOCOに12.4mAPの改善をもたらす。
論文 参考訳(メタデータ) (2021-07-23T15:06:31Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Optimal Feature Manipulation Attacks Against Linear Regression [64.54500628124511]
本稿では,データセットに慎重に設計した有害なデータポイントを付加したり,元のデータポイントを修正したりすることで,線形回帰による係数の操作方法について検討する。
エネルギー予算を考慮し, 目標が指定された回帰係数を1つ変更する場合に, 最適毒素データ点の閉形式解をまず提示する。
次に、攻撃者が1つの特定の回帰係数を変更しつつ、他をできるだけ小さく変更することを目的とした、より困難なシナリオに分析を拡張します。
論文 参考訳(メタデータ) (2020-02-29T04:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。