論文の概要: ConceptDrift: Uncovering Biases through the Lens of Foundational Models
- arxiv url: http://arxiv.org/abs/2410.18970v1
- Date: Thu, 24 Oct 2024 17:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:04.034504
- Title: ConceptDrift: Uncovering Biases through the Lens of Foundational Models
- Title(参考訳): ConceptDrift:基礎モデルのレンズから生物を発見
- Authors: Cristian Daniel Păduraru, Antonio Bărbălau, Radu Filipescu, Andrei Liviu Nicolicioiu, Elena Burceanu,
- Abstract要約: 本研究では,線形プローブの重み解析手法であるConceptDriftを提案する。
提案手法の有効性を実証的に証明し, バイアス増進プロンプトによるゼロショット性能を著しく向上させることにより, 提案手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 5.025665239455297
- License:
- Abstract: Datasets and pre-trained models come with intrinsic biases. Most methods rely on spotting them by analysing misclassified samples, in a semi-automated human-computer validation. In contrast, we propose ConceptDrift, a method which analyzes the weights of a linear probe, learned on top a foundational model. We capitalize on the weight update trajectory, which starts from the embedding of the textual representation of the class, and proceeds to drift towards embeddings that disclose hidden biases. Different from prior work, with this approach we can pin-point unwanted correlations from a dataset, providing more than just possible explanations for the wrong predictions. We empirically prove the efficacy of our method, by significantly improving zero-shot performance with biased-augmented prompting. Our method is not bounded to a single modality, and we experiment in this work with both image (Waterbirds, CelebA, Nico++) and text datasets (CivilComments).
- Abstract(参考訳): データセットと事前トレーニングされたモデルには、固有のバイアスが伴う。
ほとんどの方法は、半自動化された人間-コンピュータの検証において、誤分類されたサンプルを分析してそれらを見つけることに依存している。
対照的に、線形プローブの重みを解析する手法であるConceptDriftを基礎モデル上で学習する。
私たちは、クラスのテキスト表現の埋め込みから始まり、隠れたバイアスを隠蔽する埋め込みに向かって進みます。
従来の作業とは違って、このアプローチでは、データセットから不要な相関をピンポイントし、単に誤った予測を説明できる以上のものを提供します。
提案手法の有効性を実証的に証明し, バイアス増進プロンプトによるゼロショット性能を著しく向上させることにより, 提案手法の有効性を実証した。
この手法は単一のモダリティに縛られるものではなく、画像(Waterbirds, CelebA, Nico++)とテキストデータセット(CivilComments)の両方で実験する。
関連論文リスト
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
ポストホックの解釈可能性法は、モデルの意思決定プロセスを完全に捉えるのに失敗する。
本稿では,グローバルなルールベースの説明を見つけるための新しい手法であるdisCOを紹介する。
DISCOは対話的な説明をサポートし、人間の検査者がルールベースの出力で突発的な原因を区別できるようにする。
論文 参考訳(メタデータ) (2024-11-07T12:12:44Z) - Spuriousness-Aware Meta-Learning for Learning Robust Classifiers [26.544938760265136]
Spurious correlations is brittle associations between certain attribute of inputs and target variables。
深部画像分類器はしばしばそれらを予測に利用し、相関が持たないデータの一般化が不十分になる。
スプリアス相関の影響を緩和することはロバストなモデル一般化に不可欠であるが、しばしばデータ内のスプリアス相関のアノテーションを必要とする。
論文 参考訳(メタデータ) (2024-06-15T21:41:25Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - A Closer Look at Few-shot Classification Again [68.44963578735877]
トレーニングフェーズと適応フェーズで構成されている。
トレーニングアルゴリズムと適応アルゴリズムが完全に絡み合っていることを実証的に証明する。
各フェーズのメタアナリシスは、いくつかの興味深い洞察を示し、いくつかのショット分類の重要な側面をよりよく理解するのに役立ちます。
論文 参考訳(メタデータ) (2023-01-28T16:42:05Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
本稿では,類似推論に頼って,数ショット(または低ショット)の視覚推論問題を解くことを提案する。
両領域の要素間の構造的関係を抽出し、類似学習と可能な限り類似するように強制する。
RAVENデータセット上での本手法の有効性を検証し, トレーニングデータが少ない場合, 最先端の手法より優れることを示す。
論文 参考訳(メタデータ) (2020-07-23T14:00:34Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。