論文の概要: WASP: A Weight-Space Approach to Detecting Learned Spuriousness
- arxiv url: http://arxiv.org/abs/2410.18970v3
- Date: Thu, 13 Feb 2025 17:57:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:46:12.261555
- Title: WASP: A Weight-Space Approach to Detecting Learned Spuriousness
- Title(参考訳): WASP:学習した清潔さを検出するための軽量なアプローチ
- Authors: Cristian Daniel Păduraru, Antonio Bărbălau, Radu Filipescu, Andrei Liviu Nicolicioiu, Elena Burceanu,
- Abstract要約: 本稿では,モデルの予測分析からモデルの重み分析へ焦点を切り替える手法を提案する。
提案するSpuriousness (WASP) 検出のための重み空間アプローチは, 各種(spurious)相関を捉えるために, 基礎モデルの重みを解析することに依存する。
従来の手法とは違って,本手法では,トレーニングや検証の反例に照らされていない場合でも,データセットが特徴とする突発的相関を露呈することができることを示す。
- 参考スコア(独自算出の注目度): 5.025665239455297
- License:
- Abstract: It is of crucial importance to train machine learning models such that they clearly understand what defines each class in a given task. Though there is a sum of works dedicated to identifying the spurious correlations featured by a dataset that may impact the model's understanding of the classes, all current approaches rely solely on data or error analysis. That is, they cannot point out spurious correlations learned by the model that are not already pointed out by the counterexamples featured in the validation or training sets. We propose a method that transcends this limitation, switching the focus from analyzing a model's predictions to analyzing the model's weights, the mechanism behind the making of the decisions, which proves to be more insightful. Our proposed Weight-space Approach to detecting Spuriousness (WASP) relies on analyzing the weights of foundation models as they drift towards capturing various (spurious) correlations while being fine-tuned on a given dataset. We demonstrate that different from previous works, our method (i) can expose spurious correlations featured by a dataset even when they are not exposed by training or validation counterexamples, (ii) it works for multiple modalities such as image and text, and (iii) it can uncover previously untapped spurious correlations learned by ImageNet-1k classifiers.
- Abstract(参考訳): 与えられたタスクにおける各クラスの定義を明確に理解するために、機械学習モデルをトレーニングすることが重要である。
モデルがクラスを理解するのに影響を及ぼす可能性のあるデータセットによって特徴付けられる刺激的な相関関係を識別する作業はたくさんあるが、現在のアプローチはすべてデータやエラー分析にのみ依存している。
つまり、検証やトレーニングセットで特徴付けられる反例によって既に指摘されていないモデルで学んだ素早い相関を指摘することはできない。
この制限を超越し、モデルの予測分析からモデルの重み分析へ焦点を移す手法を提案する。
提案するSpuriousness (WASP) 検出のための重み空間アプローチは,基礎モデルの重み解析に頼っている。
従来の方法と異なることを実証する。
i) トレーニングや検証の反例によって露出していない場合でも、データセットが特徴とする急激な相関を露呈することができる。
(ii)画像やテキストなどの複数のモダリティに対応し、
(iii)ImageNet-1k分類器で学習した未解決の突発的相関を明らかにすることができる。
関連論文リスト
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
ポストホックの解釈可能性法は、モデルの意思決定プロセスを完全に捉えるのに失敗する。
本稿では,グローバルなルールベースの説明を見つけるための新しい手法であるdisCOを紹介する。
DISCOは対話的な説明をサポートし、人間の検査者がルールベースの出力で突発的な原因を区別できるようにする。
論文 参考訳(メタデータ) (2024-11-07T12:12:44Z) - Spuriousness-Aware Meta-Learning for Learning Robust Classifiers [26.544938760265136]
Spurious correlations is brittle associations between certain attribute of inputs and target variables。
深部画像分類器はしばしばそれらを予測に利用し、相関が持たないデータの一般化が不十分になる。
スプリアス相関の影響を緩和することはロバストなモデル一般化に不可欠であるが、しばしばデータ内のスプリアス相関のアノテーションを必要とする。
論文 参考訳(メタデータ) (2024-06-15T21:41:25Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - A Closer Look at Few-shot Classification Again [68.44963578735877]
トレーニングフェーズと適応フェーズで構成されている。
トレーニングアルゴリズムと適応アルゴリズムが完全に絡み合っていることを実証的に証明する。
各フェーズのメタアナリシスは、いくつかの興味深い洞察を示し、いくつかのショット分類の重要な側面をよりよく理解するのに役立ちます。
論文 参考訳(メタデータ) (2023-01-28T16:42:05Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
本稿では,類似推論に頼って,数ショット(または低ショット)の視覚推論問題を解くことを提案する。
両領域の要素間の構造的関係を抽出し、類似学習と可能な限り類似するように強制する。
RAVENデータセット上での本手法の有効性を検証し, トレーニングデータが少ない場合, 最先端の手法より優れることを示す。
論文 参考訳(メタデータ) (2020-07-23T14:00:34Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。