論文の概要: TesseraQ: Ultra Low-Bit LLM Post-Training Quantization with Block Reconstruction
- arxiv url: http://arxiv.org/abs/2410.19103v1
- Date: Thu, 24 Oct 2024 19:06:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:16.630322
- Title: TesseraQ: Ultra Low-Bit LLM Post-Training Quantization with Block Reconstruction
- Title(参考訳): TesseraQ:ブロック再構成による超低ビットLDM後処理量子化
- Authors: Yuhang Li, Priyadarshini Panda,
- Abstract要約: 後学習量子化(PTQ)は、メモリフットプリントを減らし、大規模言語モデル(LLM)の推論スループットを向上させるデファクト手法になりつつある。
我々は,LLMの重みを超低ビットに定量化するために,最新のPTQ技術であるTesseraQを提案する。
我々は、TesseraQが既存のスケーリングやクリッピングベースのPTQアルゴリズムとシームレスに統合できることを実証した。
- 参考スコア(独自算出の注目度): 20.903193906931687
- License:
- Abstract: Large language models (LLMs) have revolutionized natural language processing, albeit at the cost of immense memory and computation requirements. Post-training quantization (PTQ) is becoming the de facto method to reduce the memory footprint and improve the inference throughput of LLMs. In this work, we aim to push the upper limit of LLM PTQ by optimizing the weight rounding parameters with the block reconstruction technique, a predominant method in previous vision models. We propose TesseraQ, a new state-of-the-art PTQ technique, to quantize the weights of LLMs to ultra-low bits. To effectively optimize the rounding in LLMs and stabilize the reconstruction process, we introduce progressive adaptive rounding. This approach iteratively transits the soft rounding variables to hard variables during the reconstruction process. Additionally, we optimize the dequantization scale parameters to fully leverage the block reconstruction technique. We demonstrate that TesseraQ can be seamlessly integrated with existing scaling or clipping-based PTQ algorithms such as AWQ and OmniQuant, significantly enhancing their performance and establishing a new state-of-the-art. For instance, when compared to AWQ, TesseraQ improves the wikitext2 perplexity from 14.65 to 6.82 and average downstream accuracy from 50.52 to 59.27 with 2-bit weight-only quantization of LLaMA-2-7B. Across a range of quantization schemes, including W2A16, W3A16, W3A3, and W4A4, TesseraQ consistently exhibits superior performance.
- Abstract(参考訳): 大規模言語モデル(LLM)は、膨大なメモリと計算要求を犠牲にして、自然言語処理に革命をもたらした。
後トレーニング量子化(PTQ)は、メモリフットプリントを削減し、LLMの推論スループットを改善するデファクト手法になりつつある。
本研究では,従来の視覚モデルにおいて支配的な手法であるブロック再構成手法を用いて,重み付けパラメータを最適化することにより,LLM PTQの上限値を押し上げることを目的とする。
我々は,LLMの重みを超低ビットに定量化するために,最新のPTQ技術であるTesseraQを提案する。
LLMのラウンドリングを効果的に最適化し,再構築プロセスの安定化を図るために,プログレッシブ適応ラウンドリングを導入する。
このアプローチは、復元プロセス中にソフトラウンド変数をハード変数に反復的に遷移する。
さらに,ブロック再構築手法を完全に活用するために,行列化スケールパラメータを最適化する。
我々は、TesseraQが既存のスケーリングやクリッピングベースのPTQアルゴリズム(AWQやOmniQuantなど)とシームレスに統合できることを示し、その性能を大幅に向上させ、新しい最先端技術を確立する。
例えば、AWQと比較すると、TesseraQはwikitext2の複雑さを14.65から6.82に改善し、平均下流精度は50.52から59.27に改善し、LLaMA-2-7Bの2ビットの重みのみの量子化を行う。
W2A16、W3A16、W3A3、W4A4を含む様々な量子化スキームにおいて、TesseraQは一貫して優れた性能を示している。
関連論文リスト
- VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models [11.708250566573334]
大規模言語モデル(LLM)の極低ビット量子化のためのベクトル後学習量子化(VPTQ)を導入する。
VPTQはLLaMA-2で0.01$-$0.34$、Mistral-7Bで0.38$-$0.68$、LLaMA-3で4.41$-$7.34$を2ビットで還元する。
また、モデル精度を高め、モデルをさらに圧縮する残差量子化および外れ値量子化をサポートするためにVPTQを拡張した。
論文 参考訳(メタデータ) (2024-09-25T16:25:45Z) - LRQ: Optimizing Post-Training Quantization for Large Language Models by Learning Low-Rank Weight-Scaling Matrices [41.17378536966264]
低ランク量子化$-$は、大規模言語モデルのための単純だが効果的なポストトレーニング重み量子化法である。
低ランク構造によるパラメータ共有により、LRQは重みの個別のスケーリングを可能にしながら、パラメータを著しく少ない値で学習するのみである。
従来の LLM PTQ よりも, (i) 8$-bit ウェイトおよび (ii) 4$-bit ウェイトおよび (ii) 8$-bit アクティベーション量子化, (iii) 低ビット ウェイトのみの量子化スキームにおける LRQ の優位性を示す。
論文 参考訳(メタデータ) (2024-07-16T09:32:07Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
量子化対応トレーニング(QAT)は、低ビット表現によるメモリ消費を最小限の精度で削減することで、ソリューションを提供する。
より有効なQATアルゴリズムであるEfficient QAT(Efficient Quantization-Aware Training)を提案する。
効率的なQATは、全てのパラメータのブロックワイドトレーニング(Block-AP)と量子化パラメータのエンドツーエンドトレーニング(E2E-QP)の2つのフェーズを含む。
論文 参考訳(メタデータ) (2024-07-10T17:53:30Z) - GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
本稿では,学習後量子化手法であるGPTQTを導入し,メモリ使用量の削減と処理速度の向上を図る。
重みの量子化誤差の最小化は非効率であり、過度に適合することを示した。
GPTQTは、最初は線形量子化を用いて重みを相対的に高いビットに量子化し、続いて得られた重みを低ビットバイナリ符号化に変換する。
論文 参考訳(メタデータ) (2024-07-03T08:08:01Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
ポストトレーニング量子化(PTQ)は、その圧縮効率とトレーニングの文脈における費用対効果により、かなりの関心を集めている。
既存の大規模言語モデル(LLM)のPTQ手法は、事前量子化重みと後量子化重みの間の変換のスケーリングに最適化範囲を制限している。
本稿では,PTQ(AffineQuant)における等価アフィン変換を用いた直接最適化を提唱する。
論文 参考訳(メタデータ) (2024-03-19T08:40:21Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - TEQ: Trainable Equivalent Transformation for Quantization of LLMs [1.0376648762140632]
TEQは、低精度量子化を生かしながら、モデル出力のFP32精度を保存する訓練可能な等価変換である。
トレーニングプロセスは軽量で、1Kステップしか必要とせず、オリジナルのモデルのトレーニング可能なパラメータの0.1%未満である。
論文 参考訳(メタデータ) (2023-10-17T02:42:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。