A minimal tensor network beyond free fermions
- URL: http://arxiv.org/abs/2412.04216v1
- Date: Thu, 05 Dec 2024 14:49:39 GMT
- Title: A minimal tensor network beyond free fermions
- Authors: Carolin Wille, Maksimilian Usoltcev, Jens Eisert, Alexander Altland,
- Abstract summary: This work proposes a minimal model extending the duality between classical statistical spin systems and fermionic systems.
A Jordan-Wigner transformation applied to a two-dimensional tensor network maps the partition sum of a classical statistical mechanics model to a Grassmann variable integral.
The resulting model is simple, featuring only two parameters: one governing spin-spin interaction and the other measuring the deviation from the free fermion limit.
- Score: 39.847063110051245
- License:
- Abstract: This work proposes a minimal model extending the duality between classical statistical spin systems and fermionic systems beyond the case of free fermions. A Jordan-Wigner transformation applied to a two-dimensional tensor network maps the partition sum of a classical statistical mechanics model to a Grassmann variable integral, structurally similar to the path integral for interacting fermions in two dimensions. The resulting model is simple, featuring only two parameters: one governing spin-spin interaction (dual to effective hopping strength in the fermionic picture), the other measuring the deviation from the free fermion limit. Nevertheless, it exhibits a rich phase diagram, partially stabilized by elements of topology, and featuring three phases meeting at a tricritical point. Besides the interpretation as a spin and fermionic system, the model is closely related to loop gas and vertex models and can be interpreted as a parity-preserving (non-unitary) circuit. Its minimal construction makes it an ideal reference system for studying non-linearities in tensor networks and deriving results by means of duality.
Related papers
- Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Nonlinear sigma models for monitored dynamics of free fermions [0.0]
We derive descriptions for measurement-induced phase transitions in free fermion systems.
We use the replica trick to map the dynamics to the imaginary time evolution of an effective spin chain.
This is a nonlinear sigma model for an $Ntimes N$ matrix, in the replica limit $Nto 1$.
arXiv Detail & Related papers (2023-02-24T18:56:37Z) - Interaction-induced non-Hermitian topological phases from a dynamical
gauge field [0.0]
We present a minimal non-Hermitian model where a topologically nontrivial complex energy spectrum is induced by inter-particle interactions.
The model is topologically trivial for a single particle system, but exhibits nontrivial non-Hermitian topology with a point gap when two or more particles are present in the system.
arXiv Detail & Related papers (2022-10-04T12:55:38Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - The classical two-dimensional Heisenberg model revisited: An
$SU(2)$-symmetric tensor network study [0.6299766708197883]
We make use of state-the-art tensor network approaches to explore the correlation structure for Gibbs states.
We find a rapidly diverging correlation length, whose behaviour is apparently compatible with two main contradictory hypotheses.
arXiv Detail & Related papers (2021-06-11T11:05:00Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Characterization of solvable spin models via graph invariants [0.38073142980732994]
We provide a complete characterization of models that can be mapped to free fermions hopping on a graph.
A corollary of our result is a complete set of constant-sized commutation structures that constitute the obstructions to a free-fermion solution.
We show how several exact free-fermion solutions from the literature fit into our formalism and give an explicit example of a new model previously unknown to be solvable by free fermions.
arXiv Detail & Related papers (2020-03-11T18:06:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.