論文の概要: Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback
- arxiv url: http://arxiv.org/abs/2410.19133v1
- Date: Thu, 24 Oct 2024 20:04:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:02.060557
- Title: Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback
- Title(参考訳): ハイブリッドな推論:AIのフィードバックに対して、インスタンスをルーティングする方法を学ぶ
- Authors: Lester James V. Miranda, Yizhong Wang, Yanai Elazar, Sachin Kumar, Valentina Pyatkin, Faeze Brahman, Noah A. Smith, Hannaneh Hajishirzi, Pradeep Dasigi,
- Abstract要約: アノテーションの品質向上のために,人間とLMの入力を組み合わせたルーティングフレームワークを提案する。
我々は、人間とLMアノテーションの任意の組み合わせで報酬モデルの性能を予測するために、性能予測モデルを訓練する。
選択したハイブリッド混合物は,一方のみ使用した場合と比較して,報奨モデルの性能が向上することを示す。
- 参考スコア(独自算出の注目度): 87.37721254914476
- License:
- Abstract: Learning from human feedback has enabled the alignment of language models (LMs) with human preferences. However, directly collecting human preferences can be expensive, time-consuming, and can have high variance. An appealing alternative is to distill preferences from LMs as a source of synthetic annotations as they are more consistent, cheaper, and scale better than human annotation; however, they are also prone to biases and errors. In this work, we introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality, while reducing the total cost of human annotation. The crux of our approach is to identify preference instances that will benefit from human annotations. We formulate this as an optimization problem: given a preference dataset and an evaluation metric, we train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations and employ a routing strategy that selects a combination that maximizes predicted performance. We train the performance prediction model on MultiPref, a new preference dataset with 10K instances paired with human and LM labels. We show that the selected hybrid mixture of LM and direct human preferences using our routing framework achieves better reward model performance compared to using either one exclusively. We simulate selective human preference collection on three other datasets and show that our method generalizes well to all three. We analyze features from the routing model to identify characteristics of instances that can benefit from human feedback, e.g., prompts with a moderate safety concern or moderate intent complexity. We release the dataset, annotation platform, and source code used in this study to foster more efficient and accurate preference collection in the future.
- Abstract(参考訳): 人間のフィードバックから学ぶことで、言語モデル(LM)と人間の好みを一致させることができる。
しかし、人間の嗜好を直接収集するのは費用がかかり、時間がかかり、ばらつきが高い。
魅力的な代替手段は、人間のアノテーションよりも一貫性があり、安価で、スケールが良いため、合成アノテーションの源としてのLMからの嗜好を蒸留することである。
本研究では,人間のアノテーションの総コストを削減しつつ,より優れたアノテーション品質を実現するために,人間とLMの入力を組み合わせたルーティングフレームワークを提案する。
私たちのアプローチの要点は、人間のアノテーションの恩恵を受けるであろう好みのインスタンスを特定することです。
選好データセットと評価指標が与えられた場合、人間とLMアノテーションの任意の組み合わせで報酬モデルの性能を予測するために性能予測モデルを訓練し、予測性能を最大化する組み合わせを選択するルーティング戦略を採用する。
我々は、人間とLMラベルをペアにした10Kインスタンスによる新しい嗜好データセットであるMultiPrefでパフォーマンス予測モデルを訓練する。
提案手法を用いて,LMと直接人為的嗜好の組み合わせを選択した場合,それぞれが単独で使用する場合と比較して,報奨モデルの性能が向上することを示す。
我々は,他の3つのデータセットに対する選好収集をシミュレートし,その方法が3つすべてによく当てはまることを示す。
ルーティングモデルからの特徴を分析して、人間のフィードバックから恩恵を受けるインスタンスの特徴を特定する。
この研究で使用されるデータセット、アノテーションプラットフォーム、ソースコードを公開し、将来より効率的で正確な選好収集を促進する。
関連論文リスト
- General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
我々は、複雑な嗜好構造を効率的に捉えるために、応答を潜在空間に埋め込んだ選好表現学習を導入する。
また、人間からのフィードバックから報酬に基づく強化学習を一般化する嗜好スコアに基づく一般選好最適化(GPO)を提案する。
提案手法は,基礎モデルの微妙な人的価値との整合性を高めることができる。
論文 参考訳(メタデータ) (2024-10-03T04:22:55Z) - Model-based Preference Optimization in Abstractive Summarization without Human Feedback [5.438770095369458]
人間のフィードバックを伴わずに要約能力を向上させるために,モデルベース推論最適化(MPO)を導入している。
標準要約データセットと各種測定値を用いた実験により,提案したMPOは,人間のフィードバックに頼らずに生成した要約の質を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-09-27T10:35:45Z) - Hindsight Preference Learning for Offline Preference-based Reinforcement Learning [22.870967604847458]
オフライン選好に基づく強化学習(RL)は、オフラインデータセットから選択された軌道セグメントのペア間の人間の選好を使ってポリシーを最適化することに焦点を当てる。
本研究では,軌道セグメントの今後の成果を条件とした報酬を用いて,人間の嗜好をモデル化する。
提案手法であるHindsight Preference Learning (HPL) は,大規模な未ラベルデータセットで利用可能な膨大なトラジェクトリデータをフル活用することにより,クレジットの割り当てを容易にする。
論文 参考訳(メタデータ) (2024-07-05T12:05:37Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
我々は、既存の事前学習戦略を補完する人間の嗜好をモデル化するフレームワークであるPALを提案する。
PALは,強いベースラインと比較して,競争報酬モデルの精度が向上することを示す。
論文 参考訳(メタデータ) (2024-06-12T17:54:54Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation [24.374185140811115]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムを人間の価値と整合させる効果的な手法である。
本稿では、人間の嗜好に固有の異質性や、フィードバックの提供における潜在的な戦略的行動から、この問題に対処することに焦点を当てる。
本研究では, 個人化に基づく手法と集約に基づく手法の2つの枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-30T23:57:23Z) - Dissecting Human and LLM Preferences [80.55271307662365]
人間は誤りに敏感ではなく、自分の姿勢を支持する反応を好んでおり、モデルが限界を認めている場合、明確な嫌悪を示します。
GPT-4-Turboのような先進的なLCMは、より正確さ、明快さ、無害さを強調している。
嗜好に基づく評価は意図的に操作可能であることを示す。
論文 参考訳(メタデータ) (2024-02-17T14:34:31Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiffは、人間の好みを定量化し、抽象性をカバーし、拡散計画をガイドする新しいフレームワークである。
ユーザがカスタマイズした動作と正確に一致し、効率的に切り替えることができます。
選好マッチング,スイッチング,カバーにおいて,他のベースラインに比べて優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T13:53:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。