論文の概要: Cascading Failure Prediction via Causal Inference
- arxiv url: http://arxiv.org/abs/2410.19179v1
- Date: Thu, 24 Oct 2024 22:22:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:33:13.230216
- Title: Cascading Failure Prediction via Causal Inference
- Title(参考訳): 因果推論によるカスケード故障予測
- Authors: Shiuli Subhra Ghosh, Anmol Dwivedi, Ali Tajer, Kyongmin Yeo, Wesley M. Gifford,
- Abstract要約: 本稿では,送電網のカスケード故障を解析するための新しい枠組みを提案する。
新たな異常がシステム全体にどのように伝播するかを予測するための因果推論フレームワークを形式化する。
このフレームワークの有効性は、IEEE 14-bus、39-bus、および118-busシステムの関連する文献と比較して評価される。
- 参考スコア(独自算出の注目度): 14.016252401409462
- License:
- Abstract: Causal inference provides an analytical framework to identify and quantify cause-and-effect relationships among a network of interacting agents. This paper offers a novel framework for analyzing cascading failures in power transmission networks. This framework generates a directed latent graph in which the nodes represent the transmission lines and the directed edges encode the cause-effect relationships. This graph has a structure distinct from the system's topology, signifying the intricate fact that both local and non-local interdependencies exist among transmission lines, which are more general than only the local interdependencies that topological graphs can present. This paper formalizes a causal inference framework for predicting how an emerging anomaly propagates throughout the system. Using this framework, two algorithms are designed, providing an analytical framework to identify the most likely and most costly cascading scenarios. The framework's effectiveness is evaluated compared to the pertinent literature on the IEEE 14-bus, 39-bus, and 118-bus systems.
- Abstract(参考訳): 因果推論は、相互作用するエージェントのネットワーク間の因果関係を特定し、定量化する分析フレームワークを提供する。
本稿では,電力伝送ネットワークにおけるカスケード故障を解析するための新しいフレームワークを提案する。
このフレームワークは、ノードが送信線を表現し、エッジが原因と影響の関係をエンコードする有向潜在グラフを生成する。
このグラフはシステムのトポロジと異なる構造を持ち、局所的および非局所的相互依存性が、トポロジカルグラフが持つことのできる局所的相互依存性よりも一般的である伝達線の間に存在するという複雑な事実を示している。
本稿では,出現する異常がシステム全体にどのように伝播するかを予測するための因果推論の枠組みを定式化する。
このフレームワークを使用して、2つのアルゴリズムが設計され、最も可能性が高く最もコストがかかるシナリオを特定するための分析フレームワークを提供する。
このフレームワークの有効性は、IEEE 14-bus、39-bus、および118-busシステムの関連する文献と比較して評価される。
関連論文リスト
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の方法は、データ生成プロセスに関する過度に単純化された仮定に依存することが多い。
構造因果モデル(SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
本稿では,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークDeCafを提案する。
論文 参考訳(メタデータ) (2024-10-27T00:22:18Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
本稿では,強力で堅牢なノード埋め込みを抽出するグラフオートエンコーダアーキテクチャを提案する。
生成した埋め込みがグラフの固有値と固有ベクトルと結びついていることを証明する。
提案フレームワークは転送学習とデータ拡張を利用して,大規模なネットワークアライメントを実現する。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Variational Disentangled Graph Auto-Encoders for Link Prediction [10.390861526194662]
本稿では,DGAE(disentangled graph auto-encoder)とVDGAE(variantal disentangled graph auto-encoder)の2つの変種を持つ新しいフレームワークを提案する。
提案フレームワークは,グラフのエッジの原因となる潜伏因子を推定し,その表現を一意の潜伏因子に対応する複数のチャネルに分解する。
論文 参考訳(メタデータ) (2023-06-20T06:25:05Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASONはTopological Causal DiscoveryとPersonal Causal Discoveryで構成されている。
Topological Causal Discoveryコンポーネントは、根本原因を辿るために断層伝播をモデル化することを目的としている。
個々の因果発見コンポーネントは、単一のシステムエンティティの突然の変化パターンのキャプチャに重点を置いている。
論文 参考訳(メタデータ) (2023-02-03T20:17:45Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
本稿では,逆グラフ自動エンコーダに基づく潜在ネットワーク埋め込みモデルを提案する。
この枠組みの下では、潜伏構造を発見する問題は、部分的な観測から潜伏関係を推測するものとして定式化されている。
論文 参考訳(メタデータ) (2021-09-30T16:49:46Z) - Bayesian Inductive Learner for Graph Resiliency under uncertainty [1.9254132307399257]
大規模グラフにおける臨界ノードを特定するためのベイズグラフニューラルネットワークに基づくフレームワークを提案する。
フレームワークが提供する計算複雑性の忠実さと向上について説明する。
論文 参考訳(メタデータ) (2020-12-26T07:22:29Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Moment-Matching Graph-Networks for Causal Inference [0.0]
本報告では、観測学習データから非線形構造方程式モデルをシミュレートするための、完全に教師なしのディープラーニングフレームワークについて述べる。
このノートの主な貢献は、因果ベイズグラフのエッジにモーメントマッチング損失関数を適用するアーキテクチャであり、それによって生成条件-モーメントマッチンググラフ-ニューラルネットが生成される。
論文 参考訳(メタデータ) (2020-07-20T22:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。