論文の概要: DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification
- arxiv url: http://arxiv.org/abs/2410.20295v1
- Date: Sun, 27 Oct 2024 00:22:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:21:46.669740
- Title: DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification
- Title(参考訳): DeCaf: ノード分類によるOOD一般化のための因果分解フレームワーク
- Authors: Xiaoxue Han, Huzefa Rangwala, Yue Ning,
- Abstract要約: グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の方法は、データ生成プロセスに関する過度に単純化された仮定に依存することが多い。
構造因果モデル(SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
本稿では,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークDeCafを提案する。
- 参考スコア(独自算出の注目度): 14.96980804513399
- License:
- Abstract: Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains. There is a pressing need to enhance the generalizability of GNNs on out-of-distribution (OOD) test data. Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process, which do not adequately reflect the actual dynamics of distribution shifts in graphs. In this paper, we introduce a more realistic graph data generation model using Structural Causal Models (SCMs), allowing us to redefine distribution shifts by pinpointing their origins within the generation process. Building on this, we propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings. We provide a detailed theoretical framework that shows how our approach can effectively mitigate the impact of various distribution shifts. We evaluate DeCaf across both real-world and synthetic datasets that demonstrate different patterns of shifts, confirming its efficacy in enhancing the generalizability of GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
オフ・オブ・ディストリビューション(OOD)テストデータにおけるGNNの一般化性を高める必要性が高まっている。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の手法は、しばしばデータ生成プロセスに関する過度に単純化された仮定に依存し、グラフにおける分布シフトの実際のダイナミクスを適切に反映しない。
本稿では,構造因果モデル(Structure Causal Models, SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
そこで我々は,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークであるDeCafを提案する。
我々は、我々のアプローチが様々な分布シフトの影響を効果的に緩和する方法を示す詳細な理論的枠組みを提供する。
実世界のデータセットと合成データセットの両方でDeCafを評価し,GNNの一般化性を高める効果を確認した。
関連論文リスト
- AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
テスト時間適応(TTA)は、ソースドメインに再アクセスすることなく、トレーニング済みのモデルをターゲットドメインに適応できる能力によって注目を集めている。
AdaRCは,グラフの構造シフトに効果的かつ効率的な適応を意図した,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T15:15:40Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングでますます人気が高まっている。
本稿では,構造変化が発生した場合,GNNの性能が著しく低下することが実験的に確認された。
本稿では,GNNの不変表現を学習するクラスタ情報伝達(CIT)機構を提案する。
論文 参考訳(メタデータ) (2024-03-06T10:36:56Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - MixupExplainer: Generalizing Explanations for Graph Neural Networks with
Data Augmentation [6.307753856507624]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する能力によって、注目を集めている。
GNN予測を理解するために、ポストホックなインスタンスレベルの説明法が提案されている。
我々は,既存手法における分布シフト問題の存在に光を当て,説明の質に影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-15T15:46:38Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
本稿では,同一変数集合上の2つ以上の関連するデータセットにおける因果メカニズムシフトの同定に焦点をあてる。
提案手法を実装したコードはオープンソースであり、https://github.com/kevinsbello/iSCAN.comで公開されている。
論文 参考訳(メタデータ) (2023-06-30T01:48:11Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization [23.302060306322506]
実世界のデータは、しばしば異なる属性に対して複数の分散シフトを持つ。
最先端のDGアルゴリズムは、すべてのシフトに対して一貫してうまく動作しない。
我々は、データ生成プロセスに関する知識を用いて正規化のための正しい独立制約を適応的に識別し、適用するアルゴリズムであるCausally Adaptive Constraint Minimization (CACM)を開発した。
論文 参考訳(メタデータ) (2022-06-15T22:35:06Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。