An Evidence of Addressing Coherence Errors in VQE Observables by Pulse-level VQE Approach
- URL: http://arxiv.org/abs/2410.19286v1
- Date: Fri, 25 Oct 2024 03:41:48 GMT
- Title: An Evidence of Addressing Coherence Errors in VQE Observables by Pulse-level VQE Approach
- Authors: Xiaoan Lin,
- Abstract summary: This research focuses on Variational Quantum Eigensolvers (VQEs) in the Noisy Intermediate Scale Quantum (NISQ) era.
We introduce and evaluate over-rotation and under-rotation errors in the measurement process, which are critical for obtaining accurate expectation values of Hamiltonians.
Our findings indicate that the pulse-level VQE algorithm exhibits resilience to quantum errors in terms of accuracy.
- Score: 0.0
- License:
- Abstract: Quantum computing is an advanced area of computing that leverages the principles of quantum mechanics. Quantum computing holds the potential to revolutionize various fields by handling problems that are currently intractable for classical computers. This research focuses on Variational Quantum Eigensolvers (VQEs) in the Noisy Intermediate Scale Quantum (NISQ) era. We introduce and evaluate over-rotation and under-rotation errors in the measurement process, which are critical for obtaining accurate expectation values of Hamiltonians. Our study aims to determine the extent to which these errors affect the estimated ground state energy and the computational cost in terms of optimization iterations. We conducted experiments on H2 and HeH+ molecules, varying the rotation angle, and recorded the estimated energy and optimization iterations. Our findings indicate that the pulse-level VQE algorithm exhibits resilience to quantum errors in terms of accuracy. Additionally, our results suggest that less frequent calibration of measurement rotation pulses may be sufficient, thereby saving substantial time and computational resources. However, it is important to note that while accuracy remains stable, the iteration count may still vary, necessitating a trade-off between calibration frequency and computational cost. Our work complements previous research by focusing on the observable aspect of VQEs, which has been largely overlooked. This detailed analysis contributes to a more comprehensive understanding of VQE performance in the NISQ era and supports the design and implementation of more efficient quantum algorithms.
Related papers
- On the feasibility of performing quantum chemistry calculations on quantum computers [0.0]
We propose two criteria for evaluating two leading quantum approaches for finding the ground state of molecules.
The first criterion applies to the variational quantum eigensolver (VQE) algorithm.
The second criterion applies to the quantum phase estimation (QPE) algorithm.
arXiv Detail & Related papers (2023-06-05T06:41:22Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
We show how the underlying energy estimate explicitly filters out incoherent noise in quantum algorithms.
We implement QCM for a model of quantum magnetism on IBM Quantum hardware.
We find that QCM maintains a remarkably high degree of error robustness where VQE completely fails.
arXiv Detail & Related papers (2022-11-16T09:12:55Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - Efficient measure for the expressivity of variational quantum algorithms [72.59790225766777]
We exploit an advanced tool in statistical learning theory, i.e., covering number, to study the expressivity of variational quantum algorithms.
We first exhibit how the expressivity of VQAs with an arbitrary ansatze is upper bounded by the number of quantum gates and the measurement observable.
We then explore the expressivity of VQAs on near-term quantum chips, where the system noise is considered.
arXiv Detail & Related papers (2021-04-20T13:51:08Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.