論文の概要: Fictitious Synthetic Data Can Improve LLM Factuality via Prerequisite Learning
- arxiv url: http://arxiv.org/abs/2410.19290v1
- Date: Fri, 25 Oct 2024 03:48:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:00.313967
- Title: Fictitious Synthetic Data Can Improve LLM Factuality via Prerequisite Learning
- Title(参考訳): 予備学習によるLCMのファクチュアリティ向上のための架空の合成データ
- Authors: Yujian Liu, Shiyu Chang, Tommi Jaakkola, Yang Zhang,
- Abstract要約: 我々は,この知識の不整合に対処し,幻覚を減らすために,Prereq-Tuneと呼ばれる新しい微調整戦略を提案する。
Prereq-Tuneはスキルと知識の学習を混乱させるので、モデルは知識の不整合の影響を受けずにタスクスキルのみを学習する。
- 参考スコア(独自算出の注目度): 32.93858075964824
- License:
- Abstract: Recent studies have identified one aggravating factor of LLM hallucinations as the knowledge inconsistency between pre-training and fine-tuning, where unfamiliar fine-tuning data mislead the LLM to fabricate plausible but wrong outputs. In this paper, we propose a novel fine-tuning strategy called Prereq-Tune to address this knowledge inconsistency and reduce hallucinations. Fundamentally, Prereq-Tune disentangles the learning of skills and knowledge, so the model learns only the task skills without being impacted by the knowledge inconsistency. To achieve this, Prereq-Tune introduces an additional prerequisite learning stage to learn the necessary knowledge for SFT, allowing subsequent SFT to focus only on task skills. Prereq-Tune can also be combined with fictitious synthetic data to enhance the grounding of LLM outputs to their internal knowledge. Experiments show that Prereq-Tune outperforms existing baselines in improving LLM's factuality across short QA and long-form generation tasks. It also opens new possibilities for knowledge-controlled generation in LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/Prereq_tune.git.
- Abstract(参考訳): 近年の研究では、LLM幻覚の1つの増進因子が、事前学習と微調整の知識の矛盾として特定されている。
本稿では,この知識の不整合に対処し,幻覚を減らすために,Prereq-Tuneと呼ばれる新しい微調整戦略を提案する。
基本的に、Prereq-Tuneはスキルと知識の学習を混乱させるので、モデルは知識の不整合の影響を受けずにタスクスキルのみを学習する。
これを実現するために、Prereq-Tuneは、SFTに必要な知識を学ぶための追加の必要条件学習ステージを導入し、その後のSFTがタスクスキルのみに集中できるようにする。
Prereq-Tune は架空の合成データと組み合わせて LLM 出力を内部知識に基礎付けることもできる。
実験により、Prereq-Tuneは、短いQAおよび長文生成タスクでLLMの事実性を向上する上で、既存のベースラインよりも優れていることが示された。
また、LLMにおける知識制御生成の新しい可能性も開けている。
私たちのコードはhttps://github.com/UCSB-NLP-Chang/Prereq_tune.gitで利用可能です。
関連論文リスト
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning [2.313664320808389]
本研究では、空間-関係変換とカリキュラムQ-Learning(S2RCQL)という革新的なモデルを提案する。
そこで我々は,Qラーニングに基づく経路計画アルゴリズムを設計し,文脈不整合の幻覚を緩和する。
プロンプトの補助情報として状態反応のQ-値を用いて,LLMの幻覚を補正する。
論文 参考訳(メタデータ) (2024-08-23T16:02:54Z) - FLAME: Factuality-Aware Alignment for Large Language Models [86.76336610282401]
従来のアライメントプロセスでは,大規模言語モデル(LLM)の事実精度が向上しない。
両段階の幻覚につながる要因は,教師付き微調整(SFT)と強化学習(RL)である。
直接選好最適化により,事実認識型SFTと事実認識型RLで構成された事実認識型アライメントを提案する。
論文 参考訳(メタデータ) (2024-05-02T17:54:54Z) - KnowTuning: Knowledge-aware Fine-tuning for Large Language Models [83.5849717262019]
本研究では,LLMの微粒で粗粒な知識認識を改善するための知識認識ファインタニング(KnowTuning)手法を提案する。
KnowTuningは、きめ細かい事実評価の下で、より少ない事実エラー率で多くの事実を生成する。
論文 参考訳(メタデータ) (2024-02-17T02:54:32Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
知識編集が大規模言語モデル(LLM)の知識を更新
既存の作業はこの特性を無視し、編集には一般化が欠けている。
実験により、異なる文脈がLLMに与える影響は、同じ知識を思い出す際にガウス的な分布に従うことが判明した。
論文 参考訳(メタデータ) (2024-01-15T09:09:14Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
文章を記述したLarge Language Model (LLM) を提供する。
イベントの構造と持続時間に関する常識的な知識に関して、それらを調査する。
これらの能力を反映した3つの課題に対して,最先端のLCMを評価した。
論文 参考訳(メタデータ) (2023-11-14T18:57:15Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z) - Can LMs Learn New Entities from Descriptions? Challenges in Propagating
Injected Knowledge [72.63368052592004]
我々は、注入された事実に基づいて推論を行う(またはそれらの事実を伝播する)LMの能力について研究する。
既存の知識更新手法では,注入知識の伝播がほとんどないことがわかった。
しかし、LMのコンテキストにおけるエンティティ定義の予測は、すべての設定におけるパフォーマンスを改善する。
論文 参考訳(メタデータ) (2023-05-02T17:59:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。