Multi-Agent Reinforcement Learning with Selective State-Space Models
- URL: http://arxiv.org/abs/2410.19382v2
- Date: Mon, 28 Oct 2024 11:09:26 GMT
- Title: Multi-Agent Reinforcement Learning with Selective State-Space Models
- Authors: Jemma Daniel, Ruan de Kock, Louay Ben Nessir, Sasha Abramowitz, Omayma Mahjoub, Wiem Khlifi, Claude Formanek, Arnu Pretorius,
- Abstract summary: State-Space Models (SSMs) have gained attention due to their computational efficiency.
In this work, we investigate the use of Mamba, a recent SSM, in Multi-Agent Reinforcement Learning (MARL)
We introduce a modified version of MAT that incorporates standard and bi-directional Mamba blocks, as well as a novel "cross-attention" Mamba block.
- Score: 3.8177843038388892
- License:
- Abstract: The Transformer model has demonstrated success across a wide range of domains, including in Multi-Agent Reinforcement Learning (MARL) where the Multi-Agent Transformer (MAT) has emerged as a leading algorithm in the field. However, a significant drawback of Transformer models is their quadratic computational complexity relative to input size, making them computationally expensive when scaling to larger inputs. This limitation restricts MAT's scalability in environments with many agents. Recently, State-Space Models (SSMs) have gained attention due to their computational efficiency, but their application in MARL remains unexplored. In this work, we investigate the use of Mamba, a recent SSM, in MARL and assess whether it can match the performance of MAT while providing significant improvements in efficiency. We introduce a modified version of MAT that incorporates standard and bi-directional Mamba blocks, as well as a novel "cross-attention" Mamba block. Extensive testing shows that our Multi-Agent Mamba (MAM) matches the performance of MAT across multiple standard multi-agent environments, while offering superior scalability to larger agent scenarios. This is significant for the MARL community, because it indicates that SSMs could replace Transformers without compromising performance, whilst also supporting more effective scaling to higher numbers of agents. Our project page is available at https://sites.google.com/view/multi-agent-mamba .
Related papers
- MatIR: A Hybrid Mamba-Transformer Image Restoration Model [95.17418386046054]
We propose a Mamba-Transformer hybrid image restoration model called MatIR.
MatIR cross-cycles the blocks of the Transformer layer and the Mamba layer to extract features.
In the Mamba module, we introduce the Image Inpainting State Space (IRSS) module, which traverses along four scan paths.
arXiv Detail & Related papers (2025-01-30T14:55:40Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.
In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Bi-Mamba: Towards Accurate 1-Bit State Space Models [28.478762133816726]
Bi-Mamba is a scalable and powerful 1-bit Mamba architecture designed for more efficient large language models.
Bi-Mamba achieves performance comparable to its full-precision counterparts (e.g., FP16 or BF16) and much better accuracy than post-training-binarization (PTB) Mamba baselines.
arXiv Detail & Related papers (2024-11-18T18:59:15Z) - Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models [92.36510016591782]
We present a method that is able to distill a pretrained Transformer architecture into alternative architectures such as state space models (SSMs)
Our method, called MOHAWK, is able to distill a Mamba-2 variant based on the Phi-1.5 architecture using only 3B tokens and a hybrid version (Hybrid Phi-Mamba) using 5B tokens.
Despite using less than 1% of the training data typically used to train models from scratch, Phi-Mamba boasts substantially stronger performance compared to all past open-source non-Transformer models.
arXiv Detail & Related papers (2024-08-19T17:48:11Z) - ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2 [4.30176340351235]
We introduce ML-Mamba, a multimodal language model, which utilizes the latest and efficient Mamba-2 model for inference.
We replace the Transformer-based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning.
arXiv Detail & Related papers (2024-07-29T09:38:15Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Selective state-space models (SSMs) like Mamba overcome some shortcomings of Transformers.
We present a direct comparison between 8B-context Mamba, Mamba-2, and Transformer models trained on the same datasets.
We find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks.
arXiv Detail & Related papers (2024-06-12T05:25:15Z) - Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [25.092302463435523]
State-space models (SSMs) have been proposed as alternatives to Transformer networks in language modeling.
In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks.
arXiv Detail & Related papers (2024-02-06T18:56:35Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - Multi-Agent Reinforcement Learning is a Sequence Modeling Problem [33.679936867612525]
We introduce a novel architecture named Multi-Agent Transformer (MAT)
MAT casts cooperative multi-agent reinforcement learning (MARL) into SM problems.
Central to MAT is an encoder-decoder architecture which transforms the joint policy search problem into a sequential decision making process.
arXiv Detail & Related papers (2022-05-30T09:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.