Genetic Motifs as a Blueprint for Mismatch-Tolerant Neuromorphic Computing
- URL: http://arxiv.org/abs/2410.19403v1
- Date: Fri, 25 Oct 2024 09:04:50 GMT
- Title: Genetic Motifs as a Blueprint for Mismatch-Tolerant Neuromorphic Computing
- Authors: Tommaso Boccato, Dmitrii Zendrikov, Nicola Toschi, Giacomo Indiveri,
- Abstract summary: Mixed-signal implementations of SNNs offer a promising solution to edge computing applications.
Device mismatch in the analog circuits of these neuromorphic processors poses a significant challenge to the deployment of robust processing.
We introduce a novel architectural solution inspired by biological development to address this issue.
- Score: 1.8292454465322363
- License:
- Abstract: Mixed-signal implementations of SNNs offer a promising solution to edge computing applications that require low-power and compact embedded processing systems. However, device mismatch in the analog circuits of these neuromorphic processors poses a significant challenge to the deployment of robust processing in these systems. Here we introduce a novel architectural solution inspired by biological development to address this issue. Specifically we propose to implement architectures that incorporate network motifs found in developed brains through a differentiable re-parameterization of weight matrices based on gene expression patterns and genetic rules. Thanks to the gradient descent optimization compatibility of the method proposed, we can apply the robustness of biological neural development to neuromorphic computing. To validate this approach we benchmark it using the Yin-Yang classification dataset, and compare its performance with that of standard multilayer perceptrons trained with state-of-the-art hardware-aware training method. Our results demonstrate that the proposed method mitigates mismatch-induced noise without requiring precise device mismatch measurements, effectively outperforming alternative hardware-aware techniques proposed in the literature, and providing a more general solution for improving the robustness of SNNs in neuromorphic hardware.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
This paper introduces a dynamic, error-bounded hierarchical matrix (H-matrix) compression method tailored for Physics-Informed Neural Networks (PINNs)
The proposed approach reduces the computational complexity and memory demands of large-scale physics-based models while preserving the essential properties of the Neural Tangent Kernel (NTK)
Empirical results demonstrate that this technique outperforms traditional compression methods, such as Singular Value Decomposition (SVD), pruning, and quantization, by maintaining high accuracy and improving generalization capabilities.
arXiv Detail & Related papers (2024-09-11T05:55:51Z) - Evolving Connectivity for Recurrent Spiking Neural Networks [8.80300633999542]
Recurrent neural networks (RSNNs) hold great potential for advancing artificial general intelligence.
We propose the evolving connectivity (EC) framework, an inference-only method for training RSNNs.
arXiv Detail & Related papers (2023-05-28T07:08:25Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems [50.101188703826686]
We present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.
NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia.
arXiv Detail & Related papers (2023-04-10T15:12:09Z) - Gradient-descent hardware-aware training and deployment for mixed-signal
Neuromorphic processors [2.812395851874055]
Mixed-signal neuromorphic processors provide extremely low-power operation for edge inference workloads.
We demonstrate a novel methodology for ofDine training and deployment of spiking neural networks (SNNs) to the mixed-signal neuromorphic processor DYNAP-SE2.
arXiv Detail & Related papers (2023-03-14T08:56:54Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Supervised training of spiking neural networks for robust deployment on
mixed-signal neuromorphic processors [2.6949002029513167]
Mixed-signal analog/digital electronic circuits can emulate spiking neurons and synapses with extremely high energy efficiency.
Mismatch is expressed as differences in effective parameters between identically-configured neurons and synapses.
We present a supervised learning approach that addresses this challenge by maximizing robustness to mismatch and other common sources of noise.
arXiv Detail & Related papers (2021-02-12T09:20:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.