Pushing the Boundaries: Interferometric Mass Photometry at the Quantum Limit of Sensitivity
- URL: http://arxiv.org/abs/2410.19417v1
- Date: Fri, 25 Oct 2024 09:21:01 GMT
- Title: Pushing the Boundaries: Interferometric Mass Photometry at the Quantum Limit of Sensitivity
- Authors: Fabian Müller, Emre Köse, Alfred J. Meixner, Erik Schäffer, Daniel Braun,
- Abstract summary: In comparison to the conventional confocal interferometric scattering (iSCAT) approach, our setup adds a second arm to form a Michelson interferometer.
We evaluate the quantum Cram'er-Rao bound (QCRB) for different quantum states, including single-mode coherent states, multi-frequency coherent states, and phase-averaged coherent states.
- Score: 0.7864304771129751
- License:
- Abstract: We present an innovative optical imaging system for measuring parameters of a small particle such as a macromolecule or nanoparticle at the quantum limit of sensitivity. In comparison to the conventional confocal interferometric scattering (iSCAT) approach, our setup adds a second arm to form a Michelson interferometer that allows us to tune a relative phase. We evaluate the quantum Cram\'er-Rao bound (QCRB) for different quantum states, including single-mode coherent states, multi-frequency coherent states, and phase-averaged coherent states. Our results show that the proposed setup can achieve the QCRB of sensitivity and outperform iSCAT for all considered quantum states for mass and phase estimation of a particle.
Related papers
- Observations of super-resolution using phase-controlled coherent photons
in a delayed-choice quantum eraser scheme [15.768497217367257]
Super-resolution overcoming the standard quantum limit has been intensively studied for quantum sensing applications.
Here, we report observations of coherently excited super-resolution using phase-controlled coherent photons.
arXiv Detail & Related papers (2023-12-06T08:35:49Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Using Entangled Generalized Coherent States for Photonic Quantum
Metrology [0.0]
We present a scheme for improved parameter estimation by introducing entangled generalized coherent states.
These states show enhanced sensitivity beyond the classical and Heisenberg limits.
We also propose a scheme for experimentally generating certain entangled generalized coherent states.
arXiv Detail & Related papers (2023-05-17T17:00:52Z) - Quantum Microscopy of Cells at the Heisenberg Limit [18.30334680254671]
We present quantum microscopy by coincidence (QMC) with balanced pathlengths.
QMC benefits from a configuration with balanced pathlengths, where a pair of entangled photons traversing symmetric paths with balanced optical pathlengths in two arms behave like a single photon with half the wavelength.
The low intensity and entanglement features of biphotons in QMC promise nondestructive bioimaging.
arXiv Detail & Related papers (2023-03-08T23:44:40Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Quantum interferometer combining squeezing and parametric amplification [1.099380072835174]
The sensitivity improvement of $4.86pm 0.24$ dB beyond the standard quantum limit is deterministically realized.
This interferometric system has significantly potential applications in a variety of measurements for tiny variances of physical quantities.
arXiv Detail & Related papers (2020-05-05T01:52:42Z) - Coherently driven photonic de Broglie Sagnac interferometer [0.0]
Photonic de Broglie waves (PBW) have been the key feature of such a gain in quantum metrology.
New type of PBW is presented for its potential application of a modified Sagnac interferometer.
arXiv Detail & Related papers (2020-02-05T12:32:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.