Entanglement-assisted multiparameter estimation with a solid-state quantum sensor
- URL: http://arxiv.org/abs/2505.14578v1
- Date: Tue, 20 May 2025 16:35:54 GMT
- Title: Entanglement-assisted multiparameter estimation with a solid-state quantum sensor
- Authors: Takuya Isogawa, Guoqing Wang, Boning Li, Zhiyao Hu, Shunsuke Nishimura, Ayumi Kanamoto, Haidong Yuan, Paola Cappellaro,
- Abstract summary: This work bridges the gap between foundational quantum estimation theory and real-world quantum sensing.<n>We experimentally demonstrate multiparameter estimation using a nitrogen-vacancy (NV) center in diamond, a widely adopted solid-state quantum sensor.
- Score: 7.506378889619729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum multiparameter estimation promises to extend quantum advantage to the simultaneous high-precision measurements of multiple physical quantities. However, realizing this capability in practical quantum sensors under realistic conditions remains challenging due to intrinsic system imperfections. Here, we experimentally demonstrate multiparameter estimation using a nitrogen-vacancy (NV) center in diamond, a widely adopted solid-state quantum sensor. Leveraging electronic-nuclear spin entanglement and optimized Bell state measurement at room temperature, we simultaneously estimate the amplitude, detuning, and phase of a microwave drive from a single measurement sequence. Despite practical constraints, our results achieve linear sensitivity scaling for all parameters with respect to interrogation time. This work bridges the gap between foundational quantum estimation theory and real-world quantum sensing, opening pathways toward enhanced multiparameter quantum sensors suitable for diverse scientific and technological applications.
Related papers
- Multiparameter estimation with an array of entangled atomic sensors [1.9909997482325166]
entangled state of many-particle systems are investigated to enhance measurement precision of the most precise clocks and field sensors.<n>By splitting a spin-squeezed ensemble, we create an atomic sensor array featuring inter-sensor entanglement that can be flexibly configured to enhance measurement precision of multiple parameters jointly.
arXiv Detail & Related papers (2025-04-11T16:32:29Z) - Quantum-enhanced sensing of spin-orbit coupling without fine-tuning [0.0]
Heisenberg limited enhanced precision is achieved across a wide range of parameters.
We have demonstrated quantum enhanced sensitivity for both single particle and interacting many-body probes.
arXiv Detail & Related papers (2024-11-01T14:00:23Z) - Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Realization of versatile and effective quantum metrology using a single bosonic mode [0.0]
We present a versatile and on-demand protocol for deterministic parameter estimation.<n>With low average photon numbers of only up to 1.76, we achieve quantum-enhanced precision approaching the Heisenberg scaling.<n>We show that the gain or sensitivity range can be further enhanced on the fly by tailoring the input states.
arXiv Detail & Related papers (2024-03-22T05:47:47Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Neural networks for Bayesian quantum many-body magnetometry [0.0]
Entangled quantum many-body systems can be used as sensors that enable the estimation of parameters with a precision larger than that achievable with ensembles of individual quantum detectors.
This entails a complexity that can hinder the applicability of Bayesian inference techniques.
We show how to circumvent these issues by using neural networks that faithfully reproduce the dynamics of quantum many-body sensors.
arXiv Detail & Related papers (2022-12-22T22:13:49Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.