Introducing MAPO: Momentum-Aided Gradient Descent Prompt Optimization
- URL: http://arxiv.org/abs/2410.19499v3
- Date: Thu, 26 Jun 2025 18:40:26 GMT
- Title: Introducing MAPO: Momentum-Aided Gradient Descent Prompt Optimization
- Authors: Anthony Cui, Pranav Nandyalam, Andrew Rufail, Ethan Cheung, Aiden Lei, Kevin Zhu, Sean O'Brien,
- Abstract summary: Building on ProTeGi, MAPO uses positive natural language "gradients" and a momentum-based extension to refine prompts effectively.<n>MAPO achieves faster convergence time with fewer API calls and higher F1 scores than ProTeGi.
- Score: 2.750784330885499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Momentum-Aided Prompt Optimization (MAPO) enhances the efficiency and efficacy of prompt optimization for Large Language Models (LLMs). Building on ProTeGi, MAPO uses positive natural language "gradients" and a momentum-based extension to refine prompts effectively. By tracking gradient history, MAPO avoids local minima and oscillations. It also utilizes beam search and an Upper Confidence Bound (UCB) algorithm for balanced candidate expansion and selection. Benchmark testing shows that MAPO achieves faster convergence time with fewer API calls and higher F1 scores than ProTeGi, proving it as a robust and scalable solution for automated prompt engineering in LLMs.
Related papers
- Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
This work investigates iterative approximate evaluation for arbitrary prompts.<n>It introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework.<n>MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced rollouts.
arXiv Detail & Related papers (2025-07-07T03:20:52Z) - Direct Behavior Optimization: Unlocking the Potential of Lightweight LLMs [9.085280547983091]
DeBoP is an automatic optimization method, which focuses on the optimization directly on the behavior of LwLLMs.<n>We evaluate DeBoP on seven challenging tasks where state-of-the-art LLMs excel but LwLLMs generally underperform.<n>DeBoP-optimized LwLLMs surpass GPT-3.5 on most tasks while reducing computational time by approximately 60%.
arXiv Detail & Related papers (2025-06-06T02:40:42Z) - ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
High-quality prompts are crucial for eliciting outstanding performance from large language models on complex tasks.<n>We propose ORPP, a framework that enhances model performance by optimizing and generating role-playing prompts.<n>We show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance.
arXiv Detail & Related papers (2025-06-03T05:51:35Z) - PMPO: Probabilistic Metric Prompt Optimization for Small and Large Language Models [0.15146068448101743]
We introduce PMPO, a framework that refines prompts using token-level cross-entropy loss as a direct, lightweight evaluation signal.<n>Unlike prior methods, it requires no output sampling or human evaluation during optimization, relying only on forward passes and log-likelihoods.<n>Experiments show that PMPO consistently outperforms prior methods across model sizes and tasks.
arXiv Detail & Related papers (2025-05-22T06:59:10Z) - ULTHO: Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning [50.53705050673944]
We propose ULTHO, an ultra-lightweight yet powerful framework for fast HPO in deep RL within single runs.
Specifically, we formulate the HPO process as a multi-armed bandit with clustered arms (MABC) and link it directly to long-term return optimization.
We test ULTHO on benchmarks including ALE, Procgen, MiniGrid, and PyBullet.
arXiv Detail & Related papers (2025-03-08T07:03:43Z) - Meta-Prompt Optimization for LLM-Based Sequential Decision Making [24.050701239196876]
Large language models (LLMs) have been employed as agents to solve sequential decision-making tasks.
We propose our EXPonential-weight algorithm for prompt Optimization (EXPO) to automatically optimize the task description and meta-instruction in the meta-prompt.
We also extend EXPO to additionally optimize the exemplars in the meta-prompt to further enhance the performance.
arXiv Detail & Related papers (2025-02-02T09:22:39Z) - GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers [52.17222304851524]
We introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning.
By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models.
GReaTer consistently outperforms previous state-of-the-art prompt optimization methods.
arXiv Detail & Related papers (2024-12-12T20:59:43Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers [15.809293135844756]
We revisit OPRO for automated prompting with relatively small-scale Language Models (LLMs)
OPRO shows limited effectiveness in small-scale LLMs, with limited inference capabilities constraining optimization ability.
We suggest future automatic prompting engineering to consider both model capabilities and computational costs.
arXiv Detail & Related papers (2024-05-16T17:33:50Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
We propose Free-from Instruction-oriented Prompt Optimization (FIPO) to improve task performance of large language models (LLMs)
FIPO uses a modular APO template that dynamically integrate the naive task instruction, optional instruction responses, and optional ground truth to produce finely optimized prompts.
We validate FIPO framework across five public benchmarks and six testing models.
arXiv Detail & Related papers (2024-02-19T03:56:44Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
We present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms.
PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
arXiv Detail & Related papers (2024-02-17T17:47:10Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Speeding Up Multi-Objective Hyperparameter Optimization by Task
Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator [37.553558410770314]
In this paper, we extend TPE's acquisition function to the meta-learning setting using a task similarity defined by the overlap of top domains between tasks.
In the experiments, we demonstrate that our method speeds up MO-TPE on tabular HPO benchmarks and attains state-of-the-art performance.
arXiv Detail & Related papers (2022-12-13T17:33:02Z) - Meta-Learning with Adaptive Hyperparameters [55.182841228303225]
We focus on a complementary factor in MAML framework, inner-loop optimization (or fast adaptation)
We propose a new weight update rule that greatly enhances the fast adaptation process.
arXiv Detail & Related papers (2020-10-31T08:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.