論文の概要: AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design
- arxiv url: http://arxiv.org/abs/2410.19528v3
- Date: Thu, 09 Jan 2025 15:12:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:57:40.643587
- Title: AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design
- Title(参考訳): AgentForge: 強化学習エージェント設計のためのフレキシブルなローコードプラットフォーム
- Authors: Francisco Erivaldo Fernandes Junior, Antti Oulasvirta,
- Abstract要約: 本稿では,強化学習システムにまたがるパラメータを最適化する,フレキシブルなローコードプラットフォームであるAgentForgeを提案する。
本稿では,視覚に基づくRL問題に対する性能評価について述べる。
- 参考スコア(独自算出の注目度): 23.453499054567118
- License:
- Abstract: Developing a reinforcement learning (RL) agent often involves identifying values for numerous parameters, covering the policy, reward function, environment, and agent-internal architecture. Since these parameters are interrelated in complex ways, optimizing them is a black-box problem that proves especially challenging for nonexperts. Although existing optimization-as-a-service platforms (e.g., Vizier and Optuna) can handle such problems, they are impractical for RL systems, since the need for manual user mapping of each parameter to distinct components makes the effort cumbersome. It also requires understanding of the optimization process, limiting the systems' application beyond the machine learning field and restricting access in areas such as cognitive science, which models human decision-making. To tackle these challenges, the paper presents AgentForge, a flexible low-code platform to optimize any parameter set across an RL system. Available at https://github.com/feferna/AgentForge, it allows an optimization problem to be defined in a few lines of code and handed to any of the interfaced optimizers. With AgentForge, the user can optimize the parameters either individually or jointly. The paper presents an evaluation of its performance for a challenging vision-based RL problem.
- Abstract(参考訳): 強化学習(RL)エージェントの開発には、多くのパラメータの値の特定、ポリシー、報酬関数、環境、エージェント内部アーキテクチャなどが含まれる。
これらのパラメータは複雑な方法で相互に関連しているため、最適化は非専門家にとって特に困難なブラックボックス問題である。
既存の最適化・アズ・ア・サービスプラットフォーム(例えば、VizierやOptuna)はそのような問題に対処できるが、RLシステムには実用的ではない。
また、最適化プロセスの理解、機械学習分野を超えてシステムの応用を制限すること、そして人間の意思決定をモデル化する認知科学のような分野へのアクセスを制限することが必要である。
これらの課題に対処するために、RLシステムにまたがるパラメータを最適化するフレキシブルなローコードプラットフォームであるAgentForgeを提案する。
https://github.com/feferna/AgentForgeで利用可能であり、最適化問題を数行のコードで定義し、インターフェース化されたオプティマイザのいずれかに渡すことができる。
AgentForgeを使うと、ユーザーはパラメータを個別または共同で最適化できる。
本稿では,視覚に基づくRL問題に対する性能評価について述べる。
関連論文リスト
- Can Learned Optimization Make Reinforcement Learning Less Difficult? [70.5036361852812]
学習の最適化が強化学習の難しさを克服するのに役立つかどうかを検討する。
本稿では, 塑性, 探索および非定常性のための学習最適化手法(OPEN)を用いて, 入力特性と出力構造がこれらの困難に対して予め提案された情報によって通知される更新規則をメタラーニングする。
論文 参考訳(メタデータ) (2024-07-09T17:55:23Z) - Combining Automated Optimisation of Hyperparameters and Reward Shape [7.407166175374958]
本稿では,ハイパーパラメータと報酬関数を組み合わせた最適化手法を提案する。
近似ポリシー最適化とソフト・アクター・クリティカルを用いた広範囲な実験を行った。
以上の結果から,統合最適化は環境の半分のベースライン性能よりも有意に向上し,他の環境との競争性能も向上することが示された。
論文 参考訳(メタデータ) (2024-06-26T12:23:54Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
我々は、追加のサンプルを必要としない最適化手順の非定常性を考慮するために、Adaptive $Q$Network (AdaQN)を提案する。
AdaQNは理論上は健全で、MuJoCo制御問題やAtari 2600のゲームで実証的に検証されている。
論文 参考訳(メタデータ) (2024-05-25T11:57:43Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Learning RL-Policies for Joint Beamforming Without Exploration: A Batch
Constrained Off-Policy Approach [1.0080317855851213]
本稿では,ネットワークにおけるパラメータキャンセル最適化の問題点について考察する。
探索と学習のために実世界でアルゴリズムをデプロイすることは、探索せずにデータによって達成できることを示す。
論文 参考訳(メタデータ) (2023-10-12T18:36:36Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
次世代エッジインテリジェンスは、オフロード技術を通じて様々なアプリケーションに恩恵をもたらすことが期待されている。
従来のオフロードアーキテクチャは、不均一な制約、部分的な認識、不確実な一般化、トラクタビリティの欠如など、いくつかの問題に直面している。
我々は、これらの問題を解決するための10億以上のパラメータを持つLarge AI Model-Based Offloading (LAMBO)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:25:42Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
本稿では,分散可変長遺伝的アルゴリズムを用いて,様々なRLアプリケーションに対してハイパーパラメータをチューニングする手法を提案する。
以上の結果から, より世代を要し, トレーニングエピソードが少なく, 計算コストも安価で, デプロイの堅牢性も高い最適解が得られた。
論文 参考訳(メタデータ) (2022-01-26T20:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。