論文の概要: Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization
- arxiv url: http://arxiv.org/abs/2406.11935v1
- Date: Mon, 17 Jun 2024 16:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:36:26.338530
- Title: Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization
- Title(参考訳): 反復的か革新的か? コード最適化のための問題指向の視点
- Authors: Tong Ye, Tengfei Ma, Lingfei Wu, Xuhong Zhang, Shouling Ji, Wenhai Wang,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
- 参考スコア(独自算出の注目度): 81.88668100203913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks. However, LLMs have rarely been explored for code optimization. In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time. The recently proposed first PIE dataset for performance optimization constructs program optimization pairs based on iterative submissions from the same programmer for the same problem. However, this approach restricts LLMs to local performance improvements, neglecting global algorithmic innovation. Therefore, we adopt a completely different perspective by reconstructing the optimization pairs into a problem-oriented approach. This allows for the integration of various ingenious ideas from different programmers tackling the same problem. Experimental results demonstrate that adapting LLMs to problem-oriented optimization pairs significantly enhances their optimization capabilities. Meanwhile, we identified performance bottlenecks within the problem-oriented perspective. By employing model merge, we further overcame bottlenecks and ultimately elevated the program optimization ratio ($51.76\%\rightarrow76.65\%$) and speedup ($2.65\times\rightarrow5.09\times$) to new levels.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
しかし、LLMはコード最適化のために研究されることはめったにない。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
最近提案された性能最適化のための最初のPIEデータセットは、同じ問題に対して同じプログラマからの反復的な提案に基づいて、プログラム最適化ペアを構成する。
しかし、このアプローチはLLMを局所的な性能改善に制限し、グローバルアルゴリズムの革新を無視している。
したがって、最適化ペアを問題指向のアプローチに再構成することで、まったく異なる視点を採用する。
これにより、異なるプログラマが同じ問題に対処する様々な巧妙なアイデアの統合が可能になる。
実験により, LLMを問題指向最適化ペアに適応させることで, 最適化性能が著しく向上することが示された。
一方、問題指向の観点からパフォーマンスボトルネックを特定しました。
モデルマージを利用することで、ボトルネックをさらに克服し、最終的にプログラム最適化比率(51.76\%\rightarrow76.65\%$)とスピードアップ(2.65\times\rightarrow5.09\times$)を新たなレベルに引き上げる。
関連論文リスト
- Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
我々は,勾配に基づく最適化と大規模言語モデル(MsLL)が相互補完的であることを示し,協調的な最適化手法を提案する。
私たちのコードはhttps://www.guozix.com/guozix/LLM-catalystでリリースされています。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Learning Performance-Improving Code Edits [107.21538852090208]
本稿では,大規模言語モデル(LLM)を高レベルプログラム最適化に適用するためのフレームワークを提案する。
まず、競争力のある77,000以上のC++プログラミングサブミッションペアによる、人間のプログラマによるパフォーマンス改善編集のデータセットをキュレートする。
提案手法は,検索をベースとした少数ショットプロンプトとチェーン・オブ・シンクレットを提案し,その微調整には,自己再生に基づく性能条件付き生成と合成データ拡張が含まれる。
論文 参考訳(メタデータ) (2023-02-15T18:59:21Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
最適化への学習(L2O)は、機械学習を活用して最適化方法を開発する新しいアプローチです。
この記事では、継続的最適化のためのL2Oの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2021-03-23T20:46:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。