Privacy-Preserving Federated Learning via Dataset Distillation
- URL: http://arxiv.org/abs/2410.19548v3
- Date: Mon, 04 Nov 2024 06:42:53 GMT
- Title: Privacy-Preserving Federated Learning via Dataset Distillation
- Authors: ShiMao Xu, Xiaopeng Ke, Xing Su, Shucheng Li, Hao Wu, Sheng Zhong, Fengyuan Xu,
- Abstract summary: Federated Learning (FL) allows users to share knowledge instead of raw data to train a model with high accuracy.
During the training, users lose control over the knowledge shared, which causes serious data privacy issues.
This work proposes FLiP, which aims to bring the principle of least privilege (PoLP) to FL training.
- Score: 9.60829979241686
- License:
- Abstract: Federated Learning (FL) allows users to share knowledge instead of raw data to train a model with high accuracy. Unfortunately, during the training, users lose control over the knowledge shared, which causes serious data privacy issues. We hold that users are only willing and need to share the essential knowledge to the training task to obtain the FL model with high accuracy. However, existing efforts cannot help users minimize the shared knowledge according to the user intention in the FL training procedure. This work proposes FLiP, which aims to bring the principle of least privilege (PoLP) to FL training. The key design of FLiP is applying elaborate information reduction on the training data through a local-global dataset distillation design. We measure the privacy performance through attribute inference and membership inference attacks. Extensive experiments show that FLiP strikes a good balance between model accuracy and privacy protection.
Related papers
- Federated Unlearning for Human Activity Recognition [11.287645073129108]
We propose a lightweight machine unlearning method for refining the FL HAR model by selectively removing a portion of a client's training data.
Our method achieves unlearning accuracy comparable to textitretraining methods, resulting in speedups ranging from hundreds to thousands.
arXiv Detail & Related papers (2024-01-17T15:51:36Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized.
We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation.
Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage.
arXiv Detail & Related papers (2022-10-16T06:44:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Privacy Assessment of Federated Learning using Private Personalized
Layers [0.9023847175654603]
Federated Learning (FL) is a collaborative scheme to train a learning model across multiple participants without sharing data.
We quantify the utility and privacy trade-off of a FL scheme using private personalized layers.
arXiv Detail & Related papers (2021-06-15T11:40:16Z) - Private Cross-Silo Federated Learning for Extracting Vaccine Adverse
Event Mentions [0.7349727826230862]
Federated Learning (FL) is a goto distributed training paradigm for users to jointly train a global model without physically sharing their data.
We present a comprehensive empirical analysis of various dimensions of benefits gained with FL based training.
We show that local DP can severely cripple the global model's prediction accuracy, thus dis-incentivizing users from participating in the federation.
arXiv Detail & Related papers (2021-03-12T19:20:33Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.