論文の概要: Shared Control with Black Box Agents using Oracle Queries
- arxiv url: http://arxiv.org/abs/2410.19612v1
- Date: Fri, 25 Oct 2024 15:04:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:56.440996
- Title: Shared Control with Black Box Agents using Oracle Queries
- Title(参考訳): Oracle クエリを用いた Black Box Agent による共有制御
- Authors: Inbal Avraham, Reuth Mirsky,
- Abstract要約: 共有制御問題を、協調エージェントに直接問い合わせる機能を含むように拡張する。
クエリに対する2つの潜在的な応答、すなわちオラクルと有界知識について検討する。
これらはシステム全体の学習コストを削減することを目的としている。
- 参考スコア(独自算出の注目度): 3.1905745371064493
- License:
- Abstract: Shared control problems involve a robot learning to collaborate with a human. When learning a shared control policy, short communication between the agents can often significantly reduce running times and improve the system's accuracy. We extend the shared control problem to include the ability to directly query a cooperating agent. We consider two types of potential responses to a query, namely oracles: one that can provide the learner with the best action they should take, even when that action might be myopically wrong, and one with a bounded knowledge limited to its part of the system. Given this additional information channel, this work further presents three heuristics for choosing when to query: reinforcement learning-based, utility-based, and entropy-based. These heuristics aim to reduce a system's overall learning cost. Empirical results on two environments show the benefits of querying to learn a better control policy and the tradeoffs between the proposed heuristics.
- Abstract(参考訳): 共有制御の問題には、人間と協調するロボット学習が含まれる。
共有制御ポリシーを学ぶ際には、エージェント間の短い通信が実行時間を著しく短縮し、システムの精度を向上させることがしばしばある。
共有制御問題を、協調エージェントに直接問い合わせる機能を含むように拡張する。
私たちは、クエリに対する潜在的な応答として、オラクル(orakles)という2つのタイプを考えます。1つは、学習者が取るべき最善のアクションを、たとえそのアクションがミオプティックに間違っているとしても、学習者に提供できるもの、もう1つはシステムの一部に限定した知識を持つもの。
この追加情報チャネルを前提として、この研究は、強化学習ベース、ユーティリティベース、エントロピーベースという、クエリのタイミングを選択するための3つのヒューリスティックを提示する。
これらのヒューリスティックスは、システム全体の学習コストを削減することを目的としている。
2つの環境における実証的な結果は、より良い制御ポリシーを学ぶためのクエリの利点と、提案したヒューリスティックス間のトレードオフを示している。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Establishing Shared Query Understanding in an Open Multi-Agent System [1.2031796234206138]
本研究では,協調を要するタスクを実行するために,2つのエージェント間の共通理解を開発する手法を提案する。
本手法は,オープンマルチエージェントシステムにおけるタスク指向コミュニケーションの効率向上に重点を置いている。
論文 参考訳(メタデータ) (2023-05-16T11:07:05Z) - Intrinsic fluctuations of reinforcement learning promote cooperation [0.0]
社会的ジレンマの状況における協力は、動物、人間、機械にとって不可欠である。
マルチエージェント・ラーニング・セッティングの個々の要素が協調にどのように寄与するかを実証する。
論文 参考訳(メタデータ) (2022-09-01T09:14:47Z) - Learning by Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning [27.564435351371653]
因果性、制御、強化学習に関する質問は、予測の古典的な機械学習タスクを超えて行われる。
異なる視点を組み合わせることでシナジーが生まれると我々は信じており、この競争はこのようなシナジーへの第一歩である。
両方のトラックの目標は、システムを望ましい状態に導く制御を推論することである。
論文 参考訳(メタデータ) (2022-02-12T12:37:29Z) - Adversarial Attacks in Cooperative AI [0.0]
多エージェント環境における単エージェント強化学習アルゴリズムは協調の育成には不十分である。
敵機械学習における最近の研究は、モデルは容易に誤った決定を下すことができることを示している。
協調AIは、以前の機械学習研究では研究されなかった新たな弱点を導入する可能性がある。
論文 参考訳(メタデータ) (2021-11-29T07:34:12Z) - Learning When and What to Ask: a Hierarchical Reinforcement Learning
Framework [17.017688226277834]
我々は、人間から追加情報を要求するタイミングを決定するための階層的な強化学習フレームワークを定式化した。
シミュレーションによるナビゲーション問題の結果から,本フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2021-10-14T01:30:36Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z) - A game-theoretic analysis of networked system control for common-pool
resource management using multi-agent reinforcement learning [54.55119659523629]
マルチエージェント強化学習は近年,ネットワーク型システム制御へのアプローチとして大きな可能性を秘めている。
共通プールの資源は耕作可能な土地、淡水、湿地、野生生物、魚類資源、森林、大気である。
論文 参考訳(メタデータ) (2020-10-15T14:12:26Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - RODE: Learning Roles to Decompose Multi-Agent Tasks [69.56458960841165]
ロールベースの学習は、ロールを使って複雑なタスクを分解することで、スケーラブルなマルチエージェント学習を実現するという約束を持っている。
本稿では,まず,環境および他のエージェントに対する影響に応じて協調行動空間をクラスタリングすることで,制約された役割行動空間に分解することを提案する。
これらの進歩により、我々の手法は、挑戦的なStarCraft IIマイクロマネジメントベンチマークを構成する14シナリオのうち10シナリオにおいて、現在の最先端のMARLアルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2020-10-04T09:20:59Z) - Data-driven Koopman Operators for Model-based Shared Control of
Human-Machine Systems [66.65503164312705]
本稿では,データ駆動型共有制御アルゴリズムを提案する。
ユーザのインタラクションに関するダイナミクスと情報は、Koopman演算子を使用して観察から学習される。
モデルに基づく共有制御は、自然な学習やユーザのみの制御パラダイムと比較して、タスクとコントロールのメトリクスを著しく改善する。
論文 参考訳(メタデータ) (2020-06-12T14:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。