Quantum Algorithm for Online Exp-concave Optimization
- URL: http://arxiv.org/abs/2410.19688v1
- Date: Fri, 25 Oct 2024 16:58:44 GMT
- Title: Quantum Algorithm for Online Exp-concave Optimization
- Authors: Jianhao He, Chengchang Liu, Xutong Liu, Lvzhou Li, John C. S. Lui,
- Abstract summary: We present quantum online quasi-Newton methods to tackle the problem.
Our method approximates the Hessian by quantum estimated inexact gradient.
Such regret improves the optimal classical algorithm by a factor of $T2/3$.
- Score: 30.962392035110135
- License:
- Abstract: We explore whether quantum advantages can be found for the zeroth-order feedback online exp-concave optimization problem, which is also known as bandit exp-concave optimization with multi-point feedback. We present quantum online quasi-Newton methods to tackle the problem and show that there exists quantum advantages for such problems. Our method approximates the Hessian by quantum estimated inexact gradient and can achieve $O(n\log T)$ regret with $O(1)$ queries at each round, where $n$ is the dimension of the decision set and $T$ is the total decision rounds. Such regret improves the optimal classical algorithm by a factor of $T^{2/3}$.
Related papers
- Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Alleviating the quantum Big-$M$ problem [0.237499051649312]
Classically known as the "Big-$M$" problem, it affects the physical energy scale.
We take a systematic, encompassing look at the quantum big-$M$ problem, revealing NP-hardness in finding the optimal $M$.
We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks.
arXiv Detail & Related papers (2023-07-19T18:00:05Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Optimal Stochastic Non-smooth Non-convex Optimization through
Online-to-Non-convex Conversion [56.92236659731376]
We present new algorithms for optimizing non-known, non-smooth objectives based on a novel analysis technique.
For deterministic second-order smooth objectives, applying advanced optimistic online learning techniques enables a new $O(delta0.5) all$ to recover optimal or best-known results.
arXiv Detail & Related papers (2023-02-07T22:09:20Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
Variational quantum algorithms constitute one of the most widespread methods for using current noisy quantum computers.
We investigate entanglement's role in these methods for solving optimization problems.
We conclude that entanglement plays a minor role in the MaxCut and Exact Cover 3 problems studied here.
arXiv Detail & Related papers (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Algorithm for Online Convex Optimization [4.702729080310267]
We explore whether quantum advantages can be found for the zeroth-order online convex optimization problem.
In this paper, we present quantum algorithms for the problem and show for the first time that potential quantum advantages are possible.
arXiv Detail & Related papers (2020-07-29T18:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.