論文の概要: Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology
- arxiv url: http://arxiv.org/abs/2410.19690v1
- Date: Fri, 25 Oct 2024 17:00:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:28.162704
- Title: Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology
- Title(参考訳): 大腸病理組織の全スライス画像における炎症性腸疾患の分類のための深層学習
- Authors: Amit Das, Tanmay Shukla, Naofumi Tomita, Ryland Richards, Laura Vidis, Bing Ren, Saeed Hassanpour,
- Abstract要約: ヘマトキシリンおよびエオシン含有スライド画像中の活性度を分類する深層学習モデルを開発した。
2018年と2019年にダートマス・ヒッチコック医療センターで治療を受けた636例のうち,2,077例のWSIを使用した。
- 参考スコア(独自算出の注目度): 3.311734750818073
- License:
- Abstract: Grading inflammatory bowel disease (IBD) activity using standardized histopathological scoring systems remains challenging due to resource constraints and inter-observer variability. In this study, we developed a deep learning model to classify activity grades in hematoxylin and eosin-stained whole slide images (WSIs) from patients with IBD, offering a robust approach for general pathologists. We utilized 2,077 WSIs from 636 patients treated at Dartmouth-Hitchcock Medical Center in 2018 and 2019, scanned at 40x magnification (0.25 micron/pixel). Board-certified gastrointestinal pathologists categorized the WSIs into four activity classes: inactive, mildly active, moderately active, and severely active. A transformer-based model was developed and validated using five-fold cross-validation to classify IBD activity. Using HoVerNet, we examined neutrophil distribution across activity grades. Attention maps from our model highlighted areas contributing to its prediction. The model classified IBD activity with weighted averages of 0.871 [95% Confidence Interval (CI): 0.860-0.883] for the area under the curve, 0.695 [95% CI: 0.674-0.715] for precision, 0.697 [95% CI: 0.678-0.716] for recall, and 0.695 [95% CI: 0.674-0.714] for F1-score. Neutrophil distribution was significantly different across activity classes. Qualitative evaluation of attention maps by a gastrointestinal pathologist suggested their potential for improved interpretability. Our model demonstrates robust diagnostic performance and could enhance consistency and efficiency in IBD activity assessment.
- Abstract(参考訳): 標準化された病理組織学的評価システムを用いた炎症性腸疾患(IBD)の活動は,資源制約とサーバ間変動が原因で依然として困難である。
本研究では,IBD患者からヘマトキシリンおよびエオシン含有全スライド画像(WSI)の活性度を分類する深層学習モデルを開発した。
2018年と2019年にダートマス・ヒッチコック医療センターで治療を受けた636例のうち,2,077例のWSIを使用し,40倍(0.25ミクロン/ピクセル)でスキャンした。
胃腸病理医は,WSIsを非活性,軽度活性,中等活性,重度活性の4つのクラスに分類した。
IBD活性を分類するために5倍のクロスバリデーションを用いてトランスフォーマーモデルを開発し,検証した。
HoVerNetを用いて好中球の活性度分布を検討した。
我々のモデルからの注意マップは、その予測に寄与する領域を強調した。
このモデルでは、曲線下の領域は0.871[95%信頼区間(CI):0.860-0.883]、精度は0.695(95%CI:0.674-0.715)、リコールは0.697(95%CI:0.678-0.716)、F1スコアは0.695(95%CI:0.674-0.714)である。
好中球分布は, 活動階級によって大きく異なっていた。
消化管病理医によるアテンションマップの質的評価から,解釈可能性の向上の可能性が示唆された。
本モデルでは, 診断性能が良好であり, IBD活動評価の一貫性と効率性を高めることができる。
関連論文リスト
- DynSegNet:Dynamic Architecture Adjustment for Adversarial Learning in Segmenting Hemorrhagic Lesions from Fundus Images [8.359851428921386]
本稿では,階層型U字型エンコーダデコーダ,残差ブロック,アテンション機構,ASPPモジュールを統合した逆学習に基づく動的アーキテクチャ調整手法を提案する。
実験の結果、Dice係数は0.5602の0.6802、IoU、リコールは0.766、精度は0.6525、精度は0.9955であることが示され、眼底出血セグメンテーションの課題に効果的に対処した。
論文 参考訳(メタデータ) (2025-02-13T12:11:58Z) - ECTIL: Label-efficient Computational Tumour Infiltrating Lymphocyte (TIL) assessment in breast cancer: Multicentre validation in 2,340 patients with breast cancer [17.91294880294883]
腫瘍浸潤リンパ球のレベル(TILs)は、(三重複陰性)乳癌の予後因子である。
現在の計算的TILアセスメント(CTA)モデルは、多くの詳細なアノテーションに依存している。
我々は,100倍少ない病理学アノテーションで10分で学習できる,根本的にシンプルなディープラーニングベースモデルを提案する。
論文 参考訳(メタデータ) (2025-01-24T10:28:05Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
潰瘍性大腸炎(UC)の新しい治療標的としての組織学的寛解
内視鏡(Endocytoscopy、EC)は、新しい超高倍率内視鏡技術である。
本稿では,心電図の組織学的疾患活動を評価するニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T15:54:14Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
本稿では,UNetをベースとしたセグメンテーション手法を提案する。
これは、フックスのジストロフィーの全度にわたって、信頼できるCE形態計測と腸骨同定を実現する。
論文 参考訳(メタデータ) (2022-10-13T15:34:20Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Semi-supervised learning for generalizable intracranial hemorrhage
detection and segmentation [0.0]
本研究は頭蓋内出血の検出・分節化のための半教師付き学習モデルの開発と評価である。
最初の「教師」ディープラーニングモデルは、2010年から2017年にかけて米国のある機関から収集された457ピクセルの頭部CTスキャンに基づいて訓練された。
2つ目の"学生"モデルは、このピクセルラベル付きデータセットと擬似ラベル付きデータセットの組み合わせでトレーニングされた。
論文 参考訳(メタデータ) (2021-05-03T00:14:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。