論文の概要: IPPON: Common Sense Guided Informative Path Planning for Object Goal Navigation
- arxiv url: http://arxiv.org/abs/2410.19697v1
- Date: Fri, 25 Oct 2024 17:11:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:40.495131
- Title: IPPON: Common Sense Guided Informative Path Planning for Object Goal Navigation
- Title(参考訳): IPPON:オブジェクトゴールナビゲーションのための共通センスガイドインフォーマティブパス計画
- Authors: Kaixian Qu, Jie Tan, Tingnan Zhang, Fei Xia, Cesar Cadena, Marco Hutter,
- Abstract要約: 本稿では,新しい情報経路計画法と3次元オブジェクト確率マッピング手法を提案する。
マッピングモジュールはセマンティックセグメンテーションとベイズフィルタによって関心対象の確率を計算する。
我々のプランナーはゼロショットアプローチに従っているが、2023年のHabitat ObjectNav Challengeにおいて、Path Length(SPL)とSoft SPLが重み付けしたSuccessによって測定された最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 33.979481250363584
- License:
- Abstract: Navigating efficiently to an object in an unexplored environment is a critical skill for general-purpose intelligent robots. Recent approaches to this object goal navigation problem have embraced a modular strategy, integrating classical exploration algorithms-notably frontier exploration-with a learned semantic mapping/exploration module. This paper introduces a novel informative path planning and 3D object probability mapping approach. The mapping module computes the probability of the object of interest through semantic segmentation and a Bayes filter. Additionally, it stores probabilities for common objects, which semantically guides the exploration based on common sense priors from a large language model. The planner terminates when the current viewpoint captures enough voxels identified with high confidence as the object of interest. Although our planner follows a zero-shot approach, it achieves state-of-the-art performance as measured by the Success weighted by Path Length (SPL) and Soft SPL in the Habitat ObjectNav Challenge 2023, outperforming other works by more than 20%. Furthermore, we validate its effectiveness on real robots. Project webpage: https://ippon-paper.github.io/
- Abstract(参考訳): 探索されていない環境でオブジェクトに効率的にナビゲートすることは、汎用知能ロボットにとって重要なスキルである。
このオブジェクトゴールナビゲーション問題に対する最近のアプローチは、古典的な探索アルゴリズム、特にフロンティア探索と学習されたセマンティックマッピング/探索モジュールを統合するモジュール戦略を受け入れている。
本稿では,新しい情報経路計画法と3次元オブジェクト確率マッピング手法を提案する。
マッピングモジュールはセマンティックセグメンテーションとベイズフィルタによって関心対象の確率を計算する。
さらに、共通のオブジェクトの確率を格納し、大きな言語モデルから常識に基づく探索を意味的に導く。
プランナーは、現在の視点が関心の対象として高い信頼性で特定された十分なボクセルをキャプチャしたとき、終了する。
我々のプランナーはゼロショットアプローチに従っているが、2023年のHabitat ObjectNav ChallengeでPath Length(SPL)とSoft SPLが重み付けしたSuccessによって測定された最先端のパフォーマンスを達成し、他の作品よりも20%以上向上している。
さらに,実際のロボット上での有効性を検証する。
プロジェクトWebページ:https://ippon-paper.github.io/
関連論文リスト
- VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language
Model [28.79971953667143]
VoroNavは、リアルタイムで構築されたセマンティックマップから探索経路と計画ノードを抽出する意味探索フレームワークである。
トポロジカルおよびセマンティック情報を活用することで、VoroNavは大きな言語モデルで容易に解釈できるパスとイメージのテキストベースの記述を設計する。
論文 参考訳(メタデータ) (2024-01-05T08:05:07Z) - Probable Object Location (POLo) Score Estimation for Efficient Object
Goal Navigation [15.623723522165731]
本稿では,POLo(Probable Object Location)スコアを中心とした新しいフレームワークを提案する。
計算集約的なPOLoスコアを近似するためにトレーニングされたニューラルネットワークであるPOLoNetを導入することで、フレームワークの実用性をさらに向上する。
OVMM 2023チャレンジの第1フェーズを含む実験では,POLoNetを組み込んだエージェントが,幅広いベースライン手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2023-11-14T08:45:32Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
対象目標ナビゲーションのための暗黙的な空間マップを提案する。
提案手法は, 挑戦的なMP3Dデータセット上での技量を著しく上回る。
我々は、実際のロボットにモデルをデプロイし、実際のシーンでオブジェクトゴールナビゲーションの結果を奨励する。
論文 参考訳(メタデータ) (2023-08-10T14:21:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
推定距離マップに基づいて経路計画を直接実行可能なオブジェクトゴールナビゲーションフレームワークを提案する。
具体的には,鳥眼のセマンティックマップを入力として,地図セルから対象物までの距離を推定する。
推定距離マップを用いて、エージェントは環境を探索し、人間設計または学習されたナビゲーションポリシーに基づいて対象物に移動することができる。
論文 参考訳(メタデータ) (2022-02-08T09:22:50Z) - PONI: Potential Functions for ObjectGoal Navigation with
Interaction-free Learning [125.22462763376993]
対話自由学習(PONI)を用いたオブジェクト指向ナビゲーションの可能性について提案する。
PONIは、物がどこに見えるかというスキルと、どのように(x, y)にナビゲートするかを歪めます。」
論文 参考訳(メタデータ) (2022-01-25T01:07:32Z) - SGoLAM: Simultaneous Goal Localization and Mapping for Multi-Object Goal
Navigation [5.447924312563365]
マルチオブジェクトゴールナビゲーションのためのシンプルで効率的なアルゴリズムであるSGoLAMを提案する。
RGB-DカメラとGPS/センサーを装備したエージェントを前提として,現実的な3D環境下でターゲットオブジェクトの列に移動させることが目的である。
SGoLAMはCVPR 2021 MultiON(Multi-Object Goal Navigation)の2位にランクインしている。
論文 参考訳(メタデータ) (2021-10-14T06:15:14Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
人間のように3Dエンボディ環境のどこからでも言語ガイドされたターゲットに向かって移動する能力は、インテリジェントロボットの「聖杯」目標の1つです。
ほとんどのビジュアルナビゲーションベンチマークは、ステップバイステップの詳細な命令セットに導かれ、固定された出発点から目標に向かって移動することに焦点を当てている。
このアプローチは、人間だけが物体とその周囲がどのように見えるかを説明する現実世界の問題から逸脱し、ロボットにどこからでも航行を依頼する。
論文 参考訳(メタデータ) (2021-03-31T15:01:04Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。