TimeSuite: Improving MLLMs for Long Video Understanding via Grounded Tuning
- URL: http://arxiv.org/abs/2410.19702v2
- Date: Wed, 12 Feb 2025 16:47:30 GMT
- Title: TimeSuite: Improving MLLMs for Long Video Understanding via Grounded Tuning
- Authors: Xiangyu Zeng, Kunchang Li, Chenting Wang, Xinhao Li, Tianxiang Jiang, Ziang Yan, Songze Li, Yansong Shi, Zhengrong Yue, Yi Wang, Yali Wang, Yu Qiao, Limin Wang,
- Abstract summary: This paper proposes TimeSuite, a collection of new designs to adapt the existing short-form video MLLMs for long video understanding.
TimeSuite provides a successful solution to enhance the long video understanding capability of short-form MLLM.
In addition, we introduce the TimePro, a comprehensive grounding-centric instruction dataset composed of 9 tasks and 349k high-quality grounded annotations.
- Score: 42.928144657587325
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in short video understanding. However, understanding long-form videos still remains challenging for MLLMs. This paper proposes TimeSuite, a collection of new designs to adapt the existing short-form video MLLMs for long video understanding, including a simple yet efficient framework to process long video sequence, a high-quality video dataset for grounded tuning of MLLMs, and a carefully-designed instruction tuning task to explicitly incorporate the grounding supervision in the traditional QA format. Specifically, based on VideoChat, we propose our long-video MLLM, coined as VideoChat-T, by implementing a token shuffling to compress long video tokens and introducing Temporal Adaptive Position Encoding (TAPE) to enhance the temporal awareness of visual representation. Meanwhile, we introduce the TimePro, a comprehensive grounding-centric instruction tuning dataset composed of 9 tasks and 349k high-quality grounded annotations. Notably, we design a new instruction tuning task type, called Temporal Grounded Caption, to peform detailed video descriptions with the corresponding time stamps prediction. This explicit temporal location prediction will guide MLLM to correctly attend on the visual content when generating description, and thus reduce the hallucination risk caused by the LLMs. Experimental results demonstrate that our TimeSuite provides a successful solution to enhance the long video understanding capability of short-form MLLM, achieving improvement of 5.6% and 6.8% on the benchmarks of Egoschema and VideoMME, respectively. In addition, VideoChat-T exhibits robust zero-shot temporal grounding capabilities, significantly outperforming the existing state-of-the-art MLLMs. After fine-tuning, it performs on par with the traditional supervised expert models.
Related papers
- InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.
Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.
We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Enhancing Temporal Modeling of Video LLMs via Time Gating [38.86742466948778]
Video Large Language Models (Video LLMs) have achieved impressive performance on video-and-language tasks, such as video question answering.
Most existing Video LLMs neglect temporal information in video data, leading to struggles with temporal-aware video understanding.
We propose a Time Gating Video LLM (TG-Vid) designed to enhance temporal modeling through a novel Time Gating module (TG)
arXiv Detail & Related papers (2024-10-08T06:21:29Z) - Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models [53.235170710385006]
We introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner.
We sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge.
In experiments, Grounded-VideoLLM excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA.
arXiv Detail & Related papers (2024-10-04T10:04:37Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - LLMs Meet Long Video: Advancing Long Video Question Answering with An Interactive Visual Adapter in LLMs [22.696090318037925]
Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence.
We present an Interactive Visual Adapter (IVA) within large language models (LLMs) to enhance interaction with fine-grained visual elements.
arXiv Detail & Related papers (2024-02-21T05:56:52Z) - VTimeLLM: Empower LLM to Grasp Video Moments [43.51980030572101]
Large language models (LLMs) have shown remarkable text understanding capabilities.
Video LLMs can only provide a coarse description of the entire video.
We propose VTimeLLM, a novel Video LLM for fine-grained video moment understanding.
arXiv Detail & Related papers (2023-11-30T10:49:56Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
Existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks.
We propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs.
VideoLLM incorporates a carefully designed Modality and Semantic Translator, which convert inputs from various modalities into a unified token sequence.
arXiv Detail & Related papers (2023-05-22T17:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.