VideoExpert: Augmented LLM for Temporal-Sensitive Video Understanding
- URL: http://arxiv.org/abs/2504.07519v1
- Date: Thu, 10 Apr 2025 07:33:39 GMT
- Title: VideoExpert: Augmented LLM for Temporal-Sensitive Video Understanding
- Authors: Henghao Zhao, Ge-Peng Ji, Rui Yan, Huan Xiong, Zechao Li,
- Abstract summary: VideoExpert is a general-purpose MLLM suitable for several temporal-sensitive video tasks.<n>The Temporal Expert is responsible for modeling time sequences and performing temporal grounding.<n>The Spatial Expert focuses on content detail analysis and instruction following.<n>By offloading temporal grounding from content generation, VideoExpert prevents text pattern biases in timestamp predictions.
- Score: 48.745013691038295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The core challenge in video understanding lies in perceiving dynamic content changes over time. However, multimodal large language models struggle with temporal-sensitive video tasks, which requires generating timestamps to mark the occurrence of specific events. Existing strategies require MLLMs to generate absolute or relative timestamps directly. We have observed that those MLLMs tend to rely more on language patterns than visual cues when generating timestamps, affecting their performance. To address this problem, we propose VideoExpert, a general-purpose MLLM suitable for several temporal-sensitive video tasks. Inspired by the expert concept, VideoExpert integrates two parallel modules: the Temporal Expert and the Spatial Expert. The Temporal Expert is responsible for modeling time sequences and performing temporal grounding. It processes high-frame-rate yet compressed tokens to capture dynamic variations in videos and includes a lightweight prediction head for precise event localization. The Spatial Expert focuses on content detail analysis and instruction following. It handles specially designed spatial tokens and language input, aiming to generate content-related responses. These two experts collaborate seamlessly via a special token, ensuring coordinated temporal grounding and content generation. Notably, the Temporal and Spatial Experts maintain independent parameter sets. By offloading temporal grounding from content generation, VideoExpert prevents text pattern biases in timestamp predictions. Moreover, we introduce a Spatial Compress module to obtain spatial tokens. This module filters and compresses patch tokens while preserving key information, delivering compact yet detail-rich input for the Spatial Expert. Extensive experiments demonstrate the effectiveness and versatility of the VideoExpert.
Related papers
- Multimodal Long Video Modeling Based on Temporal Dynamic Context [13.979661295432964]
We propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC)
We segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders.
To handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments.
arXiv Detail & Related papers (2025-04-14T17:34:06Z) - SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability [58.46310813774538]
Large language models (LMLMs) have made remarkable progress in either temporal or spatial localization.<n>However they struggle to perform-temporal video grounding.<n>We introduce SpaceLM, a MLLM endowed with temporal-temporal video grounding.
arXiv Detail & Related papers (2025-03-18T07:40:36Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Video LLMs for Temporal Reasoning in Long Videos [7.2900856926028155]
TemporalVLM is a video large language model capable of effective temporal reasoning and fine-grained understanding in long videos.<n>Our approach includes a visual encoder for mapping a long-term input video into features which are time-aware and contain both local and global cues.<n>To facilitate the evaluation of TemporalVLM, we present a large-scale long video dataset of industry assembly processes, namely IndustryASM.
arXiv Detail & Related papers (2024-12-04T00:50:33Z) - TimeSuite: Improving MLLMs for Long Video Understanding via Grounded Tuning [42.928144657587325]
This paper proposes TimeSuite, a collection of new designs to adapt the existing short-form video MLLMs for long video understanding.<n>TimeSuite provides a successful solution to enhance the long video understanding capability of short-form MLLM.<n>In addition, we introduce the TimePro, a comprehensive grounding-centric instruction dataset composed of 9 tasks and 349k high-quality grounded annotations.
arXiv Detail & Related papers (2024-10-25T17:19:55Z) - Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models [53.235170710385006]
We introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner.
We sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge.
In experiments, Grounded-VideoLLM excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA.
arXiv Detail & Related papers (2024-10-04T10:04:37Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - VTimeLLM: Empower LLM to Grasp Video Moments [43.51980030572101]
Large language models (LLMs) have shown remarkable text understanding capabilities.
Video LLMs can only provide a coarse description of the entire video.
We propose VTimeLLM, a novel Video LLM for fine-grained video moment understanding.
arXiv Detail & Related papers (2023-11-30T10:49:56Z) - VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive
Learning [82.09856883441044]
Video understanding relies on perceiving the global content modeling its internal connections.
We propose a block-wise strategy where we mask neighboring video tokens in both spatial and temporal domains.
We also add an augmentation-free contrastive learning method to further capture global content.
arXiv Detail & Related papers (2021-06-21T16:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.