論文の概要: Water and Electricity Consumption Forecasting at an Educational Institution using Machine Learning models with Metaheuristic Optimization
- arxiv url: http://arxiv.org/abs/2410.19709v1
- Date: Fri, 25 Oct 2024 17:30:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:02.587595
- Title: Water and Electricity Consumption Forecasting at an Educational Institution using Machine Learning models with Metaheuristic Optimization
- Title(参考訳): メタヒューリスティック最適化を用いた機械学習モデルを用いた教育機関における水・電力消費予測
- Authors: Eduardo Luiz Alba, Matheus Henrique Dal Molin Ribeiro, Gilson Adamczuk, Flavio Trojan, Erick Oliveira Rodrigues,
- Abstract要約: 本研究では、ランダムフォレスト(RF)とサポートベクトル回帰(SVR)の2つの機械学習モデルの比較を提案する。
データは過去5年間、連邦パラナ・カンプスパルマス研究所で収集された。
その結果,12ステップの地平線上での水と電力消費を予測する場合,ランダムフォレストモデルが最も優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Educational institutions are essential for economic and social development. Budget cuts in Brazil in recent years have made it difficult to carry out their activities and projects. In the case of expenses with water and electricity, unexpected situations can occur, such as leaks and equipment failures, which make their management challenging. This study proposes a comparison between two machine learning models, Random Forest (RF) and Support Vector Regression (SVR), for water and electricity consumption forecasting at the Federal Institute of Paran\'a-Campus Palmas, with a 12-month forecasting horizon, as well as evaluating the influence of the application of climatic variables as exogenous features. The data were collected over the past five years, combining details pertaining to invoices with exogenous and endogenous variables. The two models had their hyperpa-rameters optimized using the Genetic Algorithm (GA) to select the individuals with the best fitness to perform the forecasting with and without climatic variables. The absolute percentage errors and root mean squared error were used as performance measures to evaluate the forecasting accuracy. The results suggest that in forecasting water and electricity consumption over a 12-step horizon, the Random Forest model exhibited the most superior performance. The integration of climatic variables often led to diminished forecasting accuracy, resulting in higher errors. Both models still had certain difficulties in predicting water consumption, indicating that new studies with different models or variables are welcome.
- Abstract(参考訳): 教育機関は経済と社会の発展に不可欠である。
近年のブラジルの予算削減は、彼らの活動やプロジェクトの実行を困難にしている。
水と電気の費用の場合、漏れや設備の故障など予期せぬ事態が起こり、経営が困難になる。
本研究では,Paran\a-Campus Palmas連邦大学における水・電力消費予測のためのランダムフォレスト(RF)とサポートベクトル回帰(SVR)の2つの機械学習モデルの比較を行った。
データは過去5年間に収集され、請求書と外因性および内因性変数に関する詳細が組み合わされた。
2つのモデルでは、遺伝的アルゴリズム(GA)を用いて、気候変数と非気候変数との予測を行うのに最適な適合度を持つ個人を選択するように、ハイパーパラメータを最適化した。
予測精度を評価するため,絶対パーセンテージ誤差とルート平均2乗誤差を性能指標として用いた。
その結果,12ステップの地平線上での水と電力消費を予測する場合,ランダムフォレストモデルが最も優れた性能を示した。
気候変数の統合はしばしば予測精度を低下させ、より高い誤差をもたらした。
どちらのモデルも水の消費を予測するのに一定の困難があり、異なるモデルや変数を持つ新しい研究が歓迎されていることを示している。
関連論文リスト
- Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
数値気象予報(NWP)モデルは、北熱帯アフリカにおけるより単純な気候学に基づく降水予測と比較すると性能が劣ることが多い。
本研究では,ガンマ回帰モデルと熱帯波(TW)で学習した畳み込みニューラルネットワーク(CNN)の2つの機械学習モデルを用いて,7~9月のモンスーンシーズンの日降雨を予測する。
論文 参考訳(メタデータ) (2024-08-29T08:36:22Z) - Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
気象予報モデルとECMWFの高分解能予測(HRES)システムを3つのケーススタディで比較した。
我々は,機械学習の天気予報モデルが,記録破りイベントにおけるHRESと類似の精度を達成できることを示す。
しかし、極端な条件への外挿は、機械学習モデルにHRESよりも深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-04-26T18:18:25Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
季節的な予測は農業、水資源管理、災害の早期警戒に重要である。
機械学習の最近の進歩は、数値モデルに対する競争力のある予測能力を達成することで天気予報に革命をもたらした。
しかし、そのような基礎モデルのトレーニングには何千日ものGPU日が必要であるため、かなりの炭素排出量が発生する。
論文 参考訳(メタデータ) (2024-01-31T14:27:35Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Intelligent model for offshore China sea fog forecasting [0.7503129292751938]
本研究は, 数値気象予報モデルに埋もれた深海霧予測手法を開発することを目的とする。
本研究では,海霧発生の要因を解明するために,時間差相関解析手法を用いて鍵予測器を同定し,そのメカニズムを解明する。
提案手法の精度を検証するため,1年にわたる包括的データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2023-07-20T04:46:34Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Probabilistic forecasts of wind power generation in regions with complex
topography using deep learning methods: An Arctic case [3.3788638227700734]
本研究は,ディープラーニングを用いた確率的予測に関する概念とアプローチを提示する。
深層学習モデルを用いて、ノルウェー北部の風力発電所から日頭発電の確率予測を行う。
論文 参考訳(メタデータ) (2022-03-10T15:52:11Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。