Learning Robust Representations for Communications over Interference-limited Channels
- URL: http://arxiv.org/abs/2410.19767v1
- Date: Sun, 13 Oct 2024 09:09:21 GMT
- Title: Learning Robust Representations for Communications over Interference-limited Channels
- Authors: Shubham Paul, Sudharsan Senthil, Preethi Seshadri, Nambi Seshadri, R David Koilpillai,
- Abstract summary: This study introduces two highly effective methodologies, namely TwinNet and SiameseNet, for the design of encoders and decoders for block transmission and detection in interference-limited environments.
- Score: 0.6990493129893111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of cellular networks, users located at the periphery of cells are particularly vulnerable to substantial interference from neighbouring cells, which can be represented as a two-user interference channel. This study introduces two highly effective methodologies, namely TwinNet and SiameseNet, using autoencoders, tailored for the design of encoders and decoders for block transmission and detection in interference-limited environments. The findings unambiguously illustrate that the developed models are capable of leveraging the interference structure to outperform traditional methods reliant on complete orthogonality. While it is recognized that systems employing coordinated transmissions and independent detection can offer greater capacity, the specific gains of data-driven models have not been thoroughly quantified or elucidated. This paper conducts an analysis to demonstrate the quantifiable advantages of such models in particular scenarios. Additionally, a comprehensive examination of the characteristics of codewords generated by these models is provided to offer a more intuitive comprehension of how these models achieve superior performance.
Related papers
- Generating High Dimensional User-Specific Wireless Channels using Diffusion Models [28.270917362301972]
This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models.
We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity.
arXiv Detail & Related papers (2024-09-05T22:08:28Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Dual-stream contrastive predictive network with joint handcrafted
feature view for SAR ship classification [9.251342335645765]
We propose a novel dual-stream contrastive predictive network (DCPNet)
The first task is to construct positive sample pairs, guiding the core encoder to learn more general representations.
The second task is to encourage adaptive capture of the correspondence between deep features and handcrated features, achieving knowledge transfer within the model, and effectively improving the redundancy caused by the feature fusion.
arXiv Detail & Related papers (2023-11-26T05:47:01Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - Data-Driven Blind Synchronization and Interference Rejection for Digital
Communication Signals [98.95383921866096]
We study the potential of data-driven deep learning methods for separation of two communication signals from an observation of their mixture.
We show that capturing high-resolution temporal structures (nonstationarities) leads to substantial performance gains.
We propose a domain-informed neural network (NN) design that is able to improve upon both "off-the-shelf" NNs and classical detection and interference rejection methods.
arXiv Detail & Related papers (2022-09-11T14:10:37Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.