Real-time Monitoring of Lower Limb Movement Resistance Based on Deep Learning
- URL: http://arxiv.org/abs/2410.19769v1
- Date: Sun, 13 Oct 2024 18:19:48 GMT
- Title: Real-time Monitoring of Lower Limb Movement Resistance Based on Deep Learning
- Authors: Buren Batu, Yuanmeng Liu, Tianyi Lyu,
- Abstract summary: Real-time lower limb movement resistance monitoring is critical for various applications in clinical and sports settings, such as rehabilitation and athletic training.
We propose a novel Mobile Multi-Task Learning Network (MMTL-Net) that integrates MobileNetV3 for efficient feature extraction and employs multi-task learning to simultaneously predict resistance levels and recognize activities.
The advantages of MMTL-Net include enhanced accuracy, reduced latency, and improved computational efficiency, making it highly suitable for real-time applications.
- Score: 0.0
- License:
- Abstract: Real-time lower limb movement resistance monitoring is critical for various applications in clinical and sports settings, such as rehabilitation and athletic training. Current methods often face limitations in accuracy, computational efficiency, and generalizability, which hinder their practical implementation. To address these challenges, we propose a novel Mobile Multi-Task Learning Network (MMTL-Net) that integrates MobileNetV3 for efficient feature extraction and employs multi-task learning to simultaneously predict resistance levels and recognize activities. The advantages of MMTL-Net include enhanced accuracy, reduced latency, and improved computational efficiency, making it highly suitable for real-time applications. Experimental results demonstrate that MMTL-Net significantly outperforms existing models on the UCI Human Activity Recognition and Wireless Sensor Data Mining Activity Prediction datasets, achieving a lower Force Error Rate (FER) of 6.8% and a higher Resistance Prediction Accuracy (RPA) of 91.2%. Additionally, the model shows a Real-time Responsiveness (RTR) of 12 milliseconds and a Throughput (TP) of 33 frames per second. These findings underscore the model's robustness and effectiveness in diverse real-world scenarios. The proposed framework not only advances the state-of-the-art in resistance monitoring but also paves the way for more efficient and accurate systems in clinical and sports applications. In real-world settings, the practical implications of MMTL-Net include its potential to enhance patient outcomes in rehabilitation and improve athletic performance through precise, real-time monitoring and feedback.
Related papers
- Deep Learning for Motion Classification in Ankle Exoskeletons Using Surface EMG and IMU Signals [0.8388591755871735]
Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks.
This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors.
Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks.
arXiv Detail & Related papers (2024-11-25T10:51:40Z) - P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide.
This study addresses the need for efficient and real-time machine learning models to detect distracted driving behaviors.
A real-time object detection system is introduced, optimized for both speed and accuracy.
arXiv Detail & Related papers (2024-10-21T02:56:44Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - Missing Value Imputation for Multi-attribute Sensor Data Streams via
Message Propagation (Extended Version) [25.022656067909523]
We propose a message propagation imputation network (MPIN) that is able to recover the missing values of data instances in a time window.
MPIN can outperform the existing data imputers by wide margins and that the continuous imputation framework is efficient and accurate.
arXiv Detail & Related papers (2023-11-13T14:01:04Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition [2.710807780228189]
Energy efficiency and low latency are crucial requirements for wearable AI-empowered human activity recognition systems.
Spike-based workouts recognition system can achieve a comparable accuracy to popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional neural network.
arXiv Detail & Related papers (2023-08-01T18:59:06Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.