Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition
- URL: http://arxiv.org/abs/2308.00787v1
- Date: Tue, 1 Aug 2023 18:59:06 GMT
- Title: Evaluating Spiking Neural Network On Neuromorphic Platform For Human
Activity Recognition
- Authors: Sizhen Bian and Michele Magno
- Abstract summary: Energy efficiency and low latency are crucial requirements for wearable AI-empowered human activity recognition systems.
Spike-based workouts recognition system can achieve a comparable accuracy to popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional neural network.
- Score: 2.710807780228189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy efficiency and low latency are crucial requirements for designing
wearable AI-empowered human activity recognition systems, due to the hard
constraints of battery operations and closed-loop feedback. While neural
network models have been extensively compressed to match the stringent edge
requirements, spiking neural networks and event-based sensing are recently
emerging as promising solutions to further improve performance due to their
inherent energy efficiency and capacity to process spatiotemporal data in very
low latency. This work aims to evaluate the effectiveness of spiking neural
networks on neuromorphic processors in human activity recognition for wearable
applications. The case of workout recognition with wrist-worn wearable motion
sensors is used as a study. A multi-threshold delta modulation approach is
utilized for encoding the input sensor data into spike trains to move the
pipeline into the event-based approach. The spikes trains are then fed to a
spiking neural network with direct-event training, and the trained model is
deployed on the research neuromorphic platform from Intel, Loihi, to evaluate
energy and latency efficiency. Test results show that the spike-based workouts
recognition system can achieve a comparable accuracy (87.5\%) comparable to the
popular milliwatt RISC-V bases multi-core processor GAP8 with a traditional
neural network ( 88.1\%) while achieving two times better energy-delay product
(0.66 \si{\micro\joule\second} vs. 1.32 \si{\micro\joule\second}).
Related papers
- Energy-Efficient Spiking Recurrent Neural Network for Gesture Recognition on Embedded GPUs [1.37621344207686]
This research explores the deployment of a spiking recurrent neural network (SRNN) with liquid time constant neurons for gesture recognition.
We focus on the energy efficiency and computational efficacy of NVIDIA Jetson Nano embedded GPU platforms.
arXiv Detail & Related papers (2024-08-23T10:50:29Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip.
We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference.
We achieve an on-chip face detection mAP[0.5] of 0.6 while consuming only 20 mW.
arXiv Detail & Related papers (2023-12-21T19:23:02Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Adaptive conversion of real-valued input into spike trains [91.3755431537592]
This paper presents a biologically plausible method for converting real-valued input into spike trains for processing with spiking neural networks.
The proposed method mimics the adaptive behaviour of retinal ganglion cells and allows input neurons to adapt their response to changes in the statistics of the input.
arXiv Detail & Related papers (2021-04-12T12:33:52Z) - Surrogate gradients for analog neuromorphic computing [2.6475944316982942]
We show that learning self-corrects for device mismatch resulting in competitive spiking network performance on vision and speech benchmarks.
Our work sets several new benchmarks for low-energy spiking network processing on analog neuromorphic hardware.
arXiv Detail & Related papers (2020-06-12T14:45:12Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.