論文の概要: A Human-Centered Approach for Improving Supervised Learning
- arxiv url: http://arxiv.org/abs/2410.19778v1
- Date: Mon, 14 Oct 2024 10:27:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:20:07.523082
- Title: A Human-Centered Approach for Improving Supervised Learning
- Title(参考訳): 教師付き学習改善のための人間中心的アプローチ
- Authors: Shubhi Bansal, Atharva Tendulkar, Nagendra Kumar,
- Abstract要約: 本稿では、パフォーマンス、時間、リソースの制約のバランスをとる方法を示す。
この研究のもう1つの目標は、人間中心のアプローチを用いて、エンサンブルスをより説明しやすく、理解しやすくすることである。
- 参考スコア(独自算出の注目度): 0.44378250612683995
- License:
- Abstract: Supervised Learning is a way of developing Artificial Intelligence systems in which a computer algorithm is trained on labeled data inputs. Effectiveness of a Supervised Learning algorithm is determined by its performance on a given dataset for a particular problem. In case of Supervised Learning problems, Stacking Ensembles usually perform better than individual classifiers due to their generalization ability. Stacking Ensembles combine predictions from multiple Machine Learning algorithms to make final predictions. Inspite of Stacking Ensembles superior performance, the overhead of Stacking Ensembles such as high cost, resources, time, and lack of explainability create challenges in real-life applications. This paper shows how we can strike a balance between performance, time, and resource constraints. Another goal of this research is to make Ensembles more explainable and intelligible using the Human-Centered approach. To achieve the aforementioned goals, we proposed a Human-Centered Behavior-inspired algorithm that streamlines the Ensemble Learning process while also reducing time, cost, and resource overhead, resulting in the superior performance of Supervised Learning in real-world applications. To demonstrate the effectiveness of our method, we perform our experiments on nine real-world datasets. Experimental results reveal that the proposed method satisfies our goals and outperforms the existing methods.
- Abstract(参考訳): Supervised Learningは、ラベル付きデータ入力に基づいてコンピュータアルゴリズムをトレーニングする人工知能システムを開発する方法である。
教師付き学習アルゴリズムの有効性は、特定の問題に対する特定のデータセットのパフォーマンスによって決定される。
教師付き学習問題の場合、スタックングアンサンブルは通常、一般化能力のため、個々の分類器よりもパフォーマンスがよい。
Stacking Ensemblesは、複数の機械学習アルゴリズムからの予測を組み合わせて、最終的な予測を行う。
Stacking Ensemblesはパフォーマンスが優れていますが、高コスト、リソース、時間、説明責任の欠如といったStacking Ensemblesのオーバーヘッドは、現実のアプリケーションにおいて課題を引き起こします。
本稿では、パフォーマンス、時間、リソースの制約のバランスをとる方法を示す。
この研究のもう1つの目標は、人間中心のアプローチを用いて、エンサンブルスをより説明しやすく、理解しやすくすることである。
以上の目的を達成するため,本研究では,環境学習プロセスの合理化と,時間,コスト,リソースオーバーヘッドの低減を図り,現実のアプリケーションにおける教師付き学習の優れた性能を実現するために,人間中心の行動インスパイアされたアルゴリズムを提案する。
提案手法の有効性を示すため,9つの実世界のデータセットを用いて実験を行った。
実験の結果,提案手法は我々の目標を満足し,既存手法よりも優れていることがわかった。
関連論文リスト
- The Role of Learning Algorithms in Collective Action [8.955918346078935]
本研究では,学習アルゴリズムの特性に大きく依存していることを示す。
このことは、機械学習における集団行動の影響を研究する際に、学習アルゴリズムを考慮に入れる必要性を強調している。
論文 参考訳(メタデータ) (2024-05-10T16:36:59Z) - Compute-Efficient Active Learning [0.0]
アクティブラーニングは、ラベルなしデータセットから最も有益なサンプルを選択することでラベリングコストを削減することを目的としている。
従来のアクティブな学習プロセスは、拡張性と効率を阻害する広範な計算資源を必要とすることが多い。
本稿では,大規模データセット上での能動的学習に伴う計算負担を軽減するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T12:32:07Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
アクティブな学習は、機械学習エージェントと人間のアノテーションとのインタラクションを活用することで、効率的なモデルトレーニングを可能にする。
スパース近似の観点からバッチアクティブラーニングを定式化する新しいフレームワークを提案し,提案する。
我々のアクティブラーニング手法は、ラベルのないデータプールから、対応するトレーニング損失関数が、そのフルデータプールに近似するように、情報的サブセットを見つけることを目的としている。
論文 参考訳(メタデータ) (2022-11-01T03:20:28Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
慎重に設計されたシステムであっても、補完的な性能はあり得ないことを示す。
まず,簡単な人間アルゴリズムをモデル化するための理論的枠組みを提案する。
次に、このモデルを用いて相補性が不可能な条件を証明する。
論文 参考訳(メタデータ) (2022-02-17T18:44:41Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z) - Leveraging Rationales to Improve Human Task Performance [15.785125079811902]
計算システムの性能が人間のユーザを上回ることを考えれば、人間のパフォーマンスを改善するために説明可能なAI能力を活用することができるだろうか?
本稿では,ユーティリティベースの計算手法の合理性を自動生成するRationale-Generating Algorithmを紹介する。
以上の結果から,本手法は人事性能の統計的改善につながる有理性を生み出すことが示唆された。
論文 参考訳(メタデータ) (2020-02-11T04:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。