論文の概要: How to Backdoor Consistency Models?
- arxiv url: http://arxiv.org/abs/2410.19785v1
- Date: Mon, 14 Oct 2024 22:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:20:08.590540
- Title: How to Backdoor Consistency Models?
- Title(参考訳): バックドア一貫性モデルはどうしたらいいのか?
- Authors: Chengen Wang, Murat Kantarcioglu,
- Abstract要約: バックドア攻撃に対する一貫性モデルの脆弱性に関する最初の研究を行う。
我々のフレームワークは、高い実用性と特異性を維持しながら、一貫性モデルの妥協に成功した。
- 参考スコア(独自算出の注目度): 10.977907906989342
- License:
- Abstract: Consistency models are a new class of models that generate images by directly mapping noise to data, allowing for one-step generation and significantly accelerating the sampling process. However, their robustness against adversarial attacks has not yet been thoroughly investigated. In this work, we conduct the first study on the vulnerability of consistency models to backdoor attacks. While previous research has explored backdoor attacks on diffusion models, these studies have primarily focused on conventional diffusion models, employing a customized backdoor training process and objective, whereas consistency models have distinct training processes and objectives. Our proposed framework demonstrates the vulnerability of consistency models to backdoor attacks. During image generation, poisoned consistency models produce images with a Fr\'echet Inception Distance (FID) comparable to that of a clean model when sampling from Gaussian noise. However, once the trigger is activated, they generate backdoor target images. We explore various trigger and target configurations to evaluate the vulnerability of consistency models, including the use of random noise as a trigger. This type of trigger is less conspicuous and aligns well with the sampling process of consistency models. Across all configurations, our framework successfully compromises the consistency models while maintaining high utility and specificity.
- Abstract(参考訳): 一貫性モデル(Consistency model)は、ノイズを直接データにマッピングすることで画像を生成する新しいモデルのクラスである。
しかし、敵の攻撃に対する堅牢性はまだ十分に調査されていない。
本研究では,バックドア攻撃に対する一貫性モデルの脆弱性に関する最初の研究を行う。
これまでの研究では、拡散モデルに対するバックドア攻撃について検討されてきたが、これらの研究は主に従来の拡散モデルに焦点を当てており、カスタマイズされたバックドアトレーニングプロセスと目的を用いているのに対し、一貫性モデルは異なるトレーニングプロセスと目的を持っている。
提案フレームワークは,バックドア攻撃に対する一貫性モデルの脆弱性を実証する。
画像生成中、有毒な一貫性モデルは、ガウスノイズからサンプリングする際、クリーンモデルと同等のFr'echet Inception Distance (FID)で画像を生成する。
しかし、トリガーがアクティベートされると、バックドアターゲットイメージを生成する。
我々は、ランダムノイズをトリガーとして使用することを含む、一貫性モデルの脆弱性を評価するために、様々なトリガーおよびターゲット構成を探索する。
このタイプのトリガーは目立たず、一貫性モデルのサンプリングプロセスとよく一致している。
すべての構成において、当社のフレームワークは、高いユーティリティと特異性を維持しながら、一貫性モデルの妥協に成功しています。
関連論文リスト
- TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors [36.07978634674072]
拡散モデルは、その完全性を損なうバックドア攻撃に弱い。
本稿では,現在の攻撃に対する統一モデリングを構築するバックドアディフェンスフレームワークであるTERDを提案する。
TERDは、さまざまな解像度のデータセットにまたがる100%のTrue Positive Rate(TPR)とTrue Negative Rate(TNR)を保証します。
論文 参考訳(メタデータ) (2024-09-09T03:02:16Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Invisible Backdoor Attacks on Diffusion Models [22.08671395877427]
近年の研究では、バックドア攻撃に対する拡散モデルの脆弱性が明らかにされている。
本稿では,目に見えないトリガーの獲得と,挿入されたバックドアのステルスネスとレジリエンスの向上を目的とした,革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-02T17:43:19Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
我々は,ブラックボックスターゲットモデルの強靭性を,敵対的プロンプトと信念の増大を通じて探索し,改善する共同枠組みを導入する。
このフレームワークは、自動的なレッド・チームリング手法を用いてターゲットモデルを探索し、信念強化器を用いて目標モデルの命令を生成し、敵のプローブに対するロバスト性を向上させる。
論文 参考訳(メタデータ) (2023-11-16T00:35:54Z) - Leveraging Diffusion-Based Image Variations for Robust Training on
Poisoned Data [26.551317580666353]
バックドア攻撃は、ニューラルネットワークをトレーニングする上で深刻なセキュリティ上の脅威となる。
本稿では,近年の拡散モデルのパワーを生かして,潜在的に有毒なデータセットのモデルトレーニングを可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:25:06Z) - Protect Federated Learning Against Backdoor Attacks via Data-Free
Trigger Generation [25.072791779134]
Federated Learning (FL)は、大規模クライアントが生データを共有せずに、協力的にモデルをトレーニングすることを可能にする。
信頼できないクライアントのデータ監査が欠如しているため、FLは特にバックドアアタックに対する攻撃に対して脆弱である。
バックドア攻撃の2つの特徴に基づく,データフリーなトリガジェネレーションに基づく防衛手法を提案する。
論文 参考訳(メタデータ) (2023-08-22T10:16:12Z) - Backdoor Attacks Against Deep Image Compression via Adaptive Frequency
Trigger [106.10954454667757]
本稿では,学習画像圧縮モデルに対する複数のトリガーを用いたバックドアアタックを提案する。
既存の圧縮システムや標準で広く使われている離散コサイン変換(DCT)に動機付けられ,周波数ベースのトリガーインジェクションモデルを提案する。
論文 参考訳(メタデータ) (2023-02-28T15:39:31Z) - Are You Stealing My Model? Sample Correlation for Fingerprinting Deep
Neural Networks [86.55317144826179]
従来の方法は、常にモデル指紋として転送可能な敵の例を利用する。
本稿では,SAmple correlation (SAC) に基づく新しいモデル盗難検出手法を提案する。
SACは、敵の訓練や移動学習を含む様々なモデル盗難攻撃をうまく防いでいる。
論文 参考訳(メタデータ) (2022-10-21T02:07:50Z) - Threat Model-Agnostic Adversarial Defense using Diffusion Models [14.603209216642034]
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
論文 参考訳(メタデータ) (2022-07-17T06:50:48Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。