BUNDL: Bayesian Uncertainty-aware Deep Learning with Noisy training Labels for Seizure Detection in EEG
- URL: http://arxiv.org/abs/2410.19815v1
- Date: Thu, 17 Oct 2024 21:19:39 GMT
- Title: BUNDL: Bayesian Uncertainty-aware Deep Learning with Noisy training Labels for Seizure Detection in EEG
- Authors: Deeksha M Shama, Archana Venkataraman,
- Abstract summary: Scalp EEG is susceptible to high noise levels, which in turn leads to imprecise annotations of the seizure timing and characteristics.
In this paper, we introduce a novel statistical framework that informs a deep learning model of label ambiguity.
BUNDL is specifically designed to address label ambiguities, enabling the training of reliable and trustworthy models for epilepsy evaluation.
- Score: 4.3152965872426625
- License:
- Abstract: Deep learning methods are at the forefront of automated epileptic seizure detection and onset zone localization using scalp-EEG. However, the performance of deep learning methods rely heavily on the quality of annotated training datasets. Scalp EEG is susceptible to high noise levels, which in turn leads to imprecise annotations of the seizure timing and characteristics. This label noise presents a significant challenge in model training and generalization. In this paper, we introduce a novel statistical framework that informs a deep learning model of label ambiguity, thereby enhancing the overall seizure detection performance. Our Bayesian UncertaiNty-aware Deep Learning, BUNDL, strategy offers a straightforward and model-agnostic method for training deep neural networks with noisy training labels that does not add any parameters to existing architectures. By integrating domain knowledge into the statistical framework, we derive a novel KL-divergence-based loss function that capitalizes on uncertainty to better learn seizure characteristics from scalp EEG. Additionally, we explore the impact of improved seizure detection on the task of automated onset zone localization. We validate BUNDL using a comprehensive simulated EEG dataset and two publicly available datasets, TUH and CHB-MIT. BUNDL consistently improves the performance of three base models on simulated data under seven types of label noise and three EEG signal-to-noise ratios. Similar improvements were observed in the real-world TUH and CHB-MIT datasets. Finally, we demonstrate that BUNDL improves the accuracy of seizure onset zone localization. BUNDL is specifically designed to address label ambiguities, enabling the training of reliable and trustworthy models for epilepsy evaluation.
Related papers
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
One-third of people suffering from mesial temporal lobe epilepsy exhibit drug resistance.
Key part in anti-seizure medication development is the capability of detecting and quantifying epileptic seizures.
In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals.
arXiv Detail & Related papers (2024-10-04T12:52:37Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Analyze the Robustness of Classifiers under Label Noise [5.708964539699851]
Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance.
This research focuses on the increasingly pertinent issue of label noise's impact on practical applications.
arXiv Detail & Related papers (2023-12-12T13:51:25Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - Self-Supervised Learning for Anomalous Channel Detection in EEG Graphs:
Application to Seizure Analysis [4.1372815372396525]
We propose to detect seizure channels and clips in a self-supervised manner where no access to the seizure data is needed.
The proposed method considers local structural and contextual information embedded in EEG graphs by employing positive and negative sub-graphs.
We conduct an extensive set of experiments on the largest seizure dataset and demonstrate that our proposed framework outperforms the state-of-the-art methods in the EEG-based seizure study.
arXiv Detail & Related papers (2022-08-15T21:56:30Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
We propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations.
We show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets.
arXiv Detail & Related papers (2022-02-26T16:03:55Z) - Learning to Rectify for Robust Learning with Noisy Labels [25.149277009932423]
We propose warped probabilistic inference (WarPI) to achieve adaptively rectifying the training procedure for the classification network.
We evaluate WarPI on four benchmarks of robust learning with noisy labels and achieve the new state-of-the-art under variant noise types.
arXiv Detail & Related papers (2021-11-08T02:25:50Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.