論文の概要: Novel Development of LLM Driven mCODE Data Model for Improved Clinical Trial Matching to Enable Standardization and Interoperability in Oncology Research
- arxiv url: http://arxiv.org/abs/2410.19826v1
- Date: Fri, 18 Oct 2024 17:31:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 07:49:39.388397
- Title: Novel Development of LLM Driven mCODE Data Model for Improved Clinical Trial Matching to Enable Standardization and Interoperability in Oncology Research
- Title(参考訳): オンコロジー研究における標準化と相互運用を可能にする臨床試験改善のためのLCM駆動型mCODEデータモデルの開発
- Authors: Aarsh Shekhar, Mincheol Kim,
- Abstract要約: がんの費用は2023年だけで2080億ドルを超える。
腫瘍学における臨床試験および臨床医療に関する伝統的な手法は、しばしば手作業、時間、データ駆動アプローチの欠如である。
本稿では,がん領域の標準化,相互運用,交換を効率化するための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.15346678870160887
- License:
- Abstract: Each year, the lack of efficient data standardization and interoperability in cancer care contributes to the severe lack of timely and effective diagnosis, while constantly adding to the burden of cost, with cancer costs nationally reaching over $208 billion in 2023 alone. Traditional methods regarding clinical trial enrollment and clinical care in oncology are often manual, time-consuming, and lack a data-driven approach. This paper presents a novel framework to streamline standardization, interoperability, and exchange of cancer domains and enhance the integration of oncology-based EHRs across disparate healthcare systems. This paper utilizes advanced LLMs and Computer Engineering to streamline cancer clinical trials and discovery. By utilizing FHIR's resource-based approach and LLM-generated mCODE profiles, we ensure timely, accurate, and efficient sharing of patient information across disparate healthcare systems. Our methodology involves transforming unstructured patient treatment data, PDFs, free-text information, and progress notes into enriched mCODE profiles, facilitating seamless integration with our novel AI and ML-based clinical trial matching engine. The results of this study show a significant improvement in data standardization, with accuracy rates of our trained LLM peaking at over 92% with datasets consisting of thousands of patient data. Additionally, our LLM demonstrated an accuracy rate of 87% for SNOMED-CT, 90% for LOINC, and 84% for RxNorm codes. This trumps the current status quo, with LLMs such as GPT-4 and Claude's 3.5 peaking at an average of 77%. This paper successfully underscores the potential of our standardization and interoperability framework, paving the way for more efficient and personalized cancer treatment.
- Abstract(参考訳): 毎年、効率的なデータ標準化とがんケアの相互運用性の欠如は、タイムリーかつ効果的な診断の欠如に寄与する一方で、コストの負担を常に増し、2023年だけで全国的に2080億ドルを超えるがんコストを達成している。
腫瘍学における臨床試験および臨床医療に関する伝統的な手法は、しばしば手作業、時間、データ駆動アプローチの欠如である。
本稿では、がん領域の標準化、相互運用、交換を効率化し、異なる医療システム間でのオンコロジーベースのEHRの統合を強化するための新しい枠組みを提案する。
本稿では,先進LLMとコンピュータ工学を用いて,がんの臨床治験と発見の合理化を図る。
FHIRのリソースベースアプローチとLLM生成mCODEプロファイルを利用することで、異なる医療システム間での患者情報のタイムリー、正確、効率的な共有を確保する。
我々の手法は、構造化されていない患者の治療データ、PDF、自由テキスト情報、進歩ノートをリッチなmCODEプロファイルに変換することを含み、新しいAIとMLベースの臨床試験マッチングエンジンとのシームレスな統合を促進する。
本研究の結果は,何千もの患者データからなるデータセットを用いて,トレーニング済みLLMの精度が92%以上に達することにより,データの標準化が著しく向上したことを示している。
さらに,SNOMED-CTでは87%,LOINCでは90%,RxNormでは84%の精度を示した。
これにより現在の状態が低下し、GPT-4やClaudeの3.5のようなLCMは平均77%のピークに達した。
本稿では,我々の標準化と相互運用性の枠組みの可能性を実証し,より効率的かつパーソナライズされたがん治療への道を開く。
関連論文リスト
- Prediction and Detection of Terminal Diseases Using Internet of Medical Things: A Review [4.4389631374821255]
AI駆動モデルでは、心臓疾患、慢性腎臓病(CKD)、アルツハイマー病、肺がんの予測において98%以上の精度が達成されている。
IoMTデータは巨大で異種であり、患者のプライバシを保護するための相互運用性とセキュリティを確保するための複雑さが増している。
今後の研究は、データ品質と相互運用性を改善するために、データの標準化と高度な前処理技術に焦点を当てるべきである。
論文 参考訳(メタデータ) (2024-09-22T15:02:33Z) - Parameter-Efficient Methods for Metastases Detection from Clinical Notes [19.540079966780954]
本研究の目的は,CT(Free-style Computed Tomography)ラジオグラフィーによる転移性肝疾患の検出を自動化することである。
本研究は,3つのアプローチを用いて知識を伝達することで,モデルの性能を向上させることを実証する。
論文 参考訳(メタデータ) (2023-10-27T20:30:59Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Collaborative residual learners for automatic icd10 prediction using
prescribed medications [45.82374977939355]
本稿では,処方用データのみを用いたicd10符号の自動予測のための協調残差学習モデルを提案する。
平均精度0.71および0.57のマルチラベル分類精度、F1スコア0.57および0.38の0.73および0.44の精度を取得し、患者および外来データセットの主診断をそれぞれ予測します。
論文 参考訳(メタデータ) (2020-12-16T07:07:27Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。